画像データによる疑似二次元気液二相流の液相の乱流拡散係数の測定

川原 顕磨呂, 松藤 能長, 佐田 富雄, 佐藤 泰生

日本機械学会論文集 B 編 1992-09-25

Kumamoto University
画像データによる疑似二次元気液二相流の液相の乱流拡散係数の測定

川原 顕磨呂*1、松藤 能長*2
佐田 幸道雄*3、佐藤 泰生*1

Measurement of Turbulent Diffusivity of the Liquid Phase in Quasi 2-D Gas-Liquid Two-Phase Flow Using Image Processing

Akimaro KAWAHARA, Takanobu MATSUFUJI, Michio SADATOMI and Yoshifusa SATO

An experimental study is reported on the turbulence structure of a two-dimensional (2-D) two-phase gas-liquid flow. A test channel, in which a nearly 2-D uniform two-phase air-water flow occurs, was used. This channel was a vertical, narrow gap space made up of two large concentric pipes. Measurements of turbulent diffusivity of the liquid phase were made for bubbly flows and churn flows in this channel. Namely, a solution of dye stuff was introduced at a constant rate from a fixed line source into a fully developed uniform two-phase flow in the channel. Flow at the downstream locations was recorded by a video camera, and roughly one thousand pictures of the flow were analyzed to obtain the distribution of dye stuff concentration using image processing. From this distribution, the turbulent diffusivity was determined. As for bubbly flow, a model for the turbulent diffusivity is proposed and examined.

Key Words: Multiphase Flow, Turbulence, Diffusion, Air-Water Two-Phase Flow, Two-Dimensional Flow, Turbulent Diffusivity, Digital Image Processing, Dye Concentration Distribution

1. まえがき

工業上で遭遇する気液二相流の多くは二次元の流れであり、加えて界面の幾何学的形状がアプリオリには決まらないという、理論的にも実験的にも取扱いの難しい流れである。この流れに対して、これまででは一次元のモデルによって多くの問題を処理してきた。しかしながら、近年、二相流の予測に関する高度化・高精度化の要望が強く、二相流の多次元的な取扱い方法の確立が重要な課題になっている。

三次元の二相流を観測する実験技術があ、近い将来、容易に我々の手に入ると考え難しい流れの予測は計算シミュレーションが先行するものと予想される。かかるとき、その計算モデルは二次元モデルから拡張されることになる。そこで、二次元モデルは実験の事実によって十分吟味しておく必要がある。このような流れの中で二次元二相流のモデル化と実験は重要な意味をもつものである。本研究は上述の観点から二次元二相流のモデル化に有用な情報を獲得することを目的としている。

既報1)~2)では、大きな径で狭いすきまをもつ垂直環状流路に気液混合物を流すことによって円周方向に一様で定常な近似的に二次元の二相流をつくり、この流れに置かれた物体の周りのボイド率分布を測定し、その結果を報告した。本報においては同じ流路内の円周方向に一様な二相流について、液相の乱流機構を乱流拡散係数によって記述し、報告する。すなわち、流れに出した染料の濃度分布を、ビデオカメラによって平面的な二次元平行平板間の横断方向の分布とみなしてとらえ、その分布から液相の乱流拡散係数を求めた結果を報告する。

気泡流における上記の乱流拡散係数については、内径60mmの円管内の乱流熱拡散係数に関するSerizawaら2)のデータと比較するとともに、その物理モデルを検討する。

2. 拡散係数の推定法

2-1 近似的に二次元の流れの実現 実験においては、既報1)~2)で報告した方法により近似的に二次元の気液二相流をつくった。すなわち、図1に示すように十分大きな半径で、かつ比較的狭いすきまをもつ環状流路を鉛直に構成する。このような環状空間を流体が流れる場合、流れは内外の壁面に拘束されるため半径方
画像データによる擬似二次元気液二相流の液相の乱流拡散係数の測定

2-2 液相の乱流拡散係数および平均濃度の定義
二次元二相流における液相の乱流拡散係数を染料の拡散現象から測定する。以下に拡散係数の定義とその推定法を述べる。

等方性の二次元乱流場における物質の拡散は次の式で書くことができる。

\[
\frac{DC}{Dt} = (D_m + \varepsilon_0) \nabla^2 C
\] \hspace{1cm} (1)

ここで、\(D_m \) は拡散係数、\(\nabla^2 \) はラプラス演算子、\(C \) は時間平均的な塩分の物質濃度である。\(D_m \) は分子拡散係数、\(\varepsilon_0 \) は乱流拡散係数であり、乱流場では一般に\(\varepsilon_0 \gg D_m \)である。

いま、\(y \) 軸に沿う一定流れ（\(u = 0 \)、\(\bar{u} = V = \)一定）に線源から定常的に物質が流入する系を考えると、物質の濃度は図2のような分布を呈するであろう。図2中の記号 \(C(x, y, t) \) は局所・瞬時時物質濃度であり、\(C(x, y) \) はその時間平均値を表す。上述の流れに対応式(1)は次のようになる。

\[
V \frac{\partial C}{\partial y} = \varepsilon_0 \left(\frac{\partial^2 C}{\partial x^2} + \frac{\partial^2 C}{\partial y^2} \right) + \text{(Source)} \] \hspace{1cm} (2)

ここで、分子拡散係数 \(D_m \) は無視されている。式(2)の解は、

\[
C(x, y, t) = \frac{S^*}{2\pi\varepsilon_0} K_0 \left(\frac{V r}{2\varepsilon_0} \right) \exp \left(\frac{-V y}{2\varepsilon_0} \right) \] \hspace{1cm} (3)

である。ただし、\(S^* \) は \(x-y \) 面上に垂直な方向の単位長さあたりの物質の流出量 \((kg/m \cdot s) \)、\(K_0(\cdot) \) は変形された第2種ベッセル関数、\(r = (x^2 + y^2)^{1/2} \) である。したがって、時間平均濃度 \(\bar{C}(x, y) \) のデータが得られれば、それと式(3)を比較することにより二次元一様流の乱流拡散係数 \(\varepsilon_0 \) を推定することができる。

上述の \(\varepsilon_0 \) の推定手法を気液二相流の液相に適用するには液相における物質濃度の時間平均値を定義しておく必要がある。二相流における局所・瞬時時液相中の物質濃度 \(C_l(x, y, t) \) は図3のような時系列で表され、\(C_l(x, y, t) \) は \(x, y \) 領域に液相が存在するときにのみ値がある。気液の存在するときに値がはれない。したがって、液相中の物質濃度 \(C_l \) の時間平均値 \(\bar{C}_l \) は次のように考えられる。一方向 \(x, y \) 領域によって占められる時間 \(T \) に関する平均値 \(\bar{C}_l(x, y) \) は一つは空間平均時間 \(T \) に関する平均値 \(\bar{C}_l(x, y) \) 一見掛けの平均値である。

ここで、局所・瞬時時物質の現象を記述するために \(0 \) と \(1 \) の二値変数 \(\sigma \) を考え、\(\sigma \) を場所と時刻の関数とする。

\[
\sigma(x, y, t) = 0: \text{液相} \]
\[
\sigma(x, y, t) = 1: \text{気相} \] \hspace{1cm} (4)

しかるとき、液相中の物質の平均濃度 \(\bar{C}_l \) は次式で定義される。

\[
\bar{C}_l(x, y) = \frac{1}{T} \int_0^T (1 - \sigma) C_l(x, y, t) \, dt
\] \hspace{1cm} (5)

他方、見掛けの平均濃度は次のようになる。
画像データによる擬似二次元気液二相流の液相の乱流拡散係数の測定

\[
\overline{C_i}(x, y) = \frac{1}{T_x} \int_t C_i(x, y, t) dt
\]

点 \((x, y)\) における気相の存在時間率 \(a(x, y)\) 一局所のポイド率を用いることにより、その点での液相の存在時間率は次式となる。

\[
\frac{T_x}{T_y} = 1 - a(x, y)
\]

ただし、本実験では一様な二相流を対象としているので、\(a(x, y)\) は平均ポイド率に等しい。そこで、式 \((5)\) ～ \((7)\) から、\(\overline{C_i}\) と \(\overline{C_l}\) の関係は次のようになる。

\[
\overline{C_l}(x, y) = \frac{\overline{C_i}(x, y)}{1 - a}
\]

本実験においては、VTR 画像の明度階調のデータを利用して濃度を求め、この場合には \(\overline{C_l}(x, y)\) の値を得ることは比較的やさしい。また、\(a\) は既報 \((7)\) で提示した画像データの二値化処理の方法より求めることができる。そこで、\(a\) と \(\overline{C_i}(x, y)\) から式 \((8)\) に用いて \(\overline{C_l}(x, y)\) を決定し、これを式 \((3)\) の左辺とすれば、二相流における液相の乱流拡散係数が得られる。

3. 実験

3-1 装置の概要 供試流路には既報 \((7)\) と同一の透明なアクリル樹脂製の垂直環状流路を用いた。図 4 に供試流路の概略を示す。流路は直径 290.1 mm の内筒と内径 301.6 mm の外筒の間に形成されるすきま \(r \pm 0.05 \text{ mm}\) の環状空間である。この環状空間に流体を流し、これを外側表面から観測した。流路の全長は 2 m であった。

作業流体には常温の水と空気を用いた。環状流路の全周にわたって一様に流れをつくるために、気水は流路下部にあけた多数の小穴（空気：直径 0.5 mm × 周方向 80 個 × 4 行 2 列、水：直径 5 mm × 周方向 80 個 × 3 個）から導入した。導入する空気、水の流量は、それぞれ流量計のロータメータ（精度 ±3%）およびオリフィス（精度 ±1%）で測定した。気水導入部から約 1.3 m 下流の発達した一様な流れの中に後述の染料注入ノズルを設置した。気水二相流体はこれらの点を通じてさらに約 0.6 m 流れ、出口において全周から気水分離タンクへ流出した。

3-2 染料の導入 細いノズルを通して染料溶液を一定量に連続して流れに導入し、その拡散現象を調べた。図 5 にその染料導入部の概略を示す。染料には市販の黒インクの原液を 1/16 もしくは 1/32 の濃液に薄めた水溶液を用い、これを内容積 5 L の容器に封入し、一定の空気圧力作用させて、黒インク水溶液は、その流量変動を小さくすることを目的として挿入された内径 1 mm のキャピラリーチューブを通り、ノズルから定常的に主流に流出した。その流出速度を供試流路内の液相の平均速度 \(V_i\) に等しくした。流れた導入器の流量は染料容器を電子てんびんにのせ、所定時間における染料の重量の減少量を計ることにより求めた（精度は ±1% 以内であった）。ノズルの先端の開口部は図 5 の右端に示すように、長径 3 mm、短径 0.7 mm のだ円状であった（線源に近づけた）
3-3 流れの撮影 一様な二次元流れに導入された染料の拡散の様子を、流路前方1200 mmの位置に据え付けたビデオカメラ（シャッタ速度10^-4 s）によって撮影し、VTR画像として記録した。すなわち、図4の環状流路の内側空間に光源を設置し、透過光により流れを撮影した。

撮影された画像の1画素あたりの実寸法は約0.4 mmであった。したがって、図1の座標軸に関してR₀-x=+0.4 mmとなるのは|x|≤50 mmの領域であつた。そこで、観察区間をカメラの焦点を中心としてx方向に±50 mm、y方向に250 mmの長方形の領域（図4の破線）とした。なお、この領域の流れは周方向に一様で、発達している。

3-4 染料濃度と無次元明度との関係 記録されたVTR画像の無次元明度を用いて流相の染料濃度を求めることで、流相の染料濃度と無次元明度との関係をあらかじめ調べておく必要があった。

光が濃度Cの液層(厚さδ)を通過するときの強さIの変化は、濃度が低ければLambert-Beerの法則により次式で表される。

\[\log(I_0/I) = -KC_i\delta \] ..(9)

ここで、Kは溶液の吸光係数で、I₀とIはそれぞれ液層への入射光と透過後の光の強さである。本実験系のような透明な2つの平板(平板の厚さa₀とa₁)、平板の吸光係数Kの間に挟まれた液層を光が通過する場合には、式(9)は次式となる。

\[\log(I_0/I) = -(K(a_0+a_1)+KC_i\delta) \] (10)

同一の系において、液層中の濃度が零(C_i=0)の場合の透過光の強さI₀は次式となる。

\[\log(I_0/I) = -KC_i(\delta) \] ..(11)

結局、Kとδが一定であれば、式(10)と式(11)により溶液の濃度と透過光の強さの比の間には次の関係が得られる。

\[C_i \propto \log(I_0/I) \] ..(12)

次に、液層を通じた光がVTR画像に記録されるため、透過光の強さI₀と録画された画像の明度Bは比例し、式(12)と同様に、液相中の染料濃度C_iと明度Bとの関には次の関係が成り立つと考えられる。

\[C_i \propto \log(B_0/B) \] ..(13)

ここで、B₀は注目している系において液相の濃度が零(C_i=0)である場合の一つの画素の明度である。本実験に使用したシステムでは、0.1<C_i<3 kg/(m²)(水)の濃度範囲において誤差±10%以内で、この関係は次式と一致することを確かめた。

\[C_i = 5.17 \log \left(\frac{B_0}{B} \right) \] ..(14)

結局、式(14)に基づき、一様な流れの液相中の染料の時間平均濃度C_i(x,y)を、画像上の対応する画素の値の平均で変化データを用いて、次式で求めた。

\[C_i(x,y) = \frac{5.17}{N} \sum_{i} \left[\log \left(\frac{B_0}{B_i(x,y)} \right) \right] \] ..(15)

ここで、B_i(x,y)は染料を含まない清水流動時の任意画素の時間平均明度、B(x,y)は染料を含む試料中の染料の任意時刻の明度である。Nはサンプリングした画面の総数である。流れが二相流の場合、Nは約1000画面とした。

VTR画像に記録される明度は液相中の染料濃度に応じて低下するが、加えて、その二つの要因によっても明度が低下した。一つは、カメラレンズの曲率によるシェーディング現象である。もう一つは、後出の図7の二相流の写真にも見られるように、気液界面における明度の低下である。これは、気泡周辺部の曲率のために光の反射が起こるからである。染料による明度低下の影響の除去を試みるためには、上記の二つの影響を除去する必要がある。そこで、式(15)のB_i(x,y)とB(x,y)には、シェーディングと気液界面の両者による明度低下の影響を補正した値を用いた。

4. 結果および考察

4-1 液相流相の拡散係数 図6に一様な水相流流における染料濃度分布の測定結果の一例を示す。水の容積流速はj=Q/A=0.6 m/sの場合であり、図6中の実験は染料導入ノズルから距離y=200 mmにおいて測定したx方向の染料濃度分布である。破線は後述の式(17)による計算値である。

変形された第2種ベッセル関数をK_0(η)とするとき、ηが12以上であれば、K_0(η)は次式によって誤差1%以内で近似できる。

\[K_0(\eta) \approx \sqrt{\frac{\pi}{2\eta}} e^{-\eta} \] ..(16)

本実験の系において是、η=Vr/2e_0>13であるから、式(16)を式(3)に適用すると、流束j_0の液相流相流の測定結果は次式となる。
画像データによる疑似二次元気液二相流の液相の乱流拡散係数の測定

\[C_i(x, y) = \frac{S^*}{2 \pi \rho \tau_{ij} \rho_i} \exp \left\{ -\frac{j_i (r - y)}{2 \varepsilon_{ij0}} \right\} \]

ここで、\(\varepsilon_{ij0} \) は液単相流における乱流拡散係数である。実験的に求めた濃度分布と式(17)による計算値の偏差が最小となる \(\varepsilon_{ij0} \) を決定し、それを単相流の乱流拡散係数の実験データとした。

実験は、\(j_c = 0.2 \sim 1.4 \) m/s の範囲で行い、それぞれの \(j_i \) に対応する乱流拡散係数を求める。その値は \(j_i \) の増大に伴って大きくなり、\(\varepsilon_{ij0} = (0.93 \sim 2.91) \times 10^{-3} \) m²/s の範囲の値を示した。Nakamuraらは幅 250 mm、水深 169 mm、長さ 1.96 m の開水路を用いて、格子流体場での染料 (D. F. Orange) 水溶液の拡散実験を行っている。乱流格子間隔を 2 とおり変えて開水路の中央部で染料水溶液の拡散を調べ、同一の水の流速 0.147 m/s において、それぞれ \(\varepsilon_{ij0} = 0.65 \times 10^{-3} \) と 1.56 \(\times 10^{-3} \) m²/s の異なる乱流拡散係数のデータを得ている。流動系が異なるため直接的な比較は避けなければならないが、本実験で得られた値は上記の Nakamuraらの値に近い。

4.2 二相流における液相の乱流拡散係数

図 7 (a)～(c) は、一様な気液二相流に導入した染料水溶液の拡散状態を示す写真 3 個である。水の容積流束を \(j_c = 0.5 \) m/s の一定値に保ち、空気流束 \(j_c \) をそれぞれ 0.1、0.4、0.6 m/s に変えた流れである。図 7 (a) のように、\(j_c = 0.1 \) m/s でわずかな気泡群が混在するだけで、水単相流の場合より著しく拡散が増大する (乱流拡散係数では約 4 倍となる) ことが確認された。\(j_c \) が高くなると気泡の寸法と数が増大する (図 7 (b)), さらに \(j_c \) が増すと、図 7 (c) に見られるように寸法が 5 cm を超える巨大な気泡が現れ、流動様式はチャーチ流へと変化する。このように \(j_c \) が高まると巨大気泡群が現れるようになると、それらが液相の流れを大きく支配する様子が観察される。すなわち、写真の染料の拡散状況から推察できるように、巨大気泡は発生頻度が低いが、破壊距離を大きく揺らしていっている。

図 8 (a)～(c) は、画像データから求めた二相流の液相中の染料濃度分布である。それぞれ \(y = 100, 70, 50 \) mm および 50 mm で測定したものであり、流れは、図 7 (a)～(c) の写真に対応している。実線が実験値、破線が次の式 (18) による計算値である。空気流束 \(j_c \) の

図 6 単相流における染料の濃度分布 (j_c=0.6 m/s)

図 7 二相流における染料の拡散状況 (j_c=0.6 m/s)
画像データによる凝似二次元気液二相流の液相の乱流拡散係数の測定

増大とともに濃度分布が平たんになっており、気相のかく乱作用の増大によって染料の拡散が促進されていることが明らかである。

二相流の液相における染料の濃度分布 $\bar{c}_L(x, y)$ は、式 (8), (17) により次式で表される。

$$\bar{c}_L(x, y) = \frac{S_t}{2\pi \varepsilon_{\alpha L} V_L} \exp \left\{ - \frac{V_L (x - y)}{2 \varepsilon_{\alpha L}} \right\} \cdots (18)$$

ここで、$\varepsilon_{\alpha L}$ は液相の乱流拡散係数、V_L は液相の平均速度すなわち $V_L = j_{Ic} (1 - \alpha)$ である。S_t は線源からの染料のわき出し量で、

$$S_t = \frac{S^*}{1 - \alpha} \cdots \cdots \cdots \cdots (19)$$

である。実験においては、染料水溶液を定常的に流量 S^* で流れに導入したが、これはすべて液相に入った。式 (19) はこれを考慮したものである。

4-1 節で述べた液単相流における乱流拡散係数の推定と同様方法を用いて、二相流の液相の乱流拡散係数 $\varepsilon_{\alpha L}$ を求めた。すなわち、液相の染料濃度分布の実験値と式 (18) によるその計算値が一致するような $\varepsilon_{\alpha L}$ を求め、その値を $\varepsilon_{\alpha L}$ の実験データとした。

図 9 は、上記の方法で求めた液相の乱流拡散係数 $\varepsilon_{\alpha L}$ を平均流速 $V_L = j_{Ic} (1 - \alpha)$ の液単相流が持る乱流拡散係数 $\varepsilon_{\alpha L}$ で除した値を、気相の容積流速 j_{Ic} に関してプロットしたものである。$\varepsilon_{\alpha L}$ のデータは水の容積流速を $j_c = 0.4, 0.6, 0.8, 1.0$ および 1.2 によるもとに実験で得られた。図 9 は、気泡域において最大土 20％、チャーガン流において最大土 30％と見積もられた。

空気流速 j_c の増加とともに、液相の乱流拡散係数 $\varepsilon_{\alpha L}$ が増大する。さらに、その増大率ではいずれの流れ束流束においても流動様式に強く依存している。気泡域において $\varepsilon_{\alpha L}$ は j_c の増加に対して比較的ゆるやかに増えており、チャーガン流では増加が急である。たとえば、$j_c = 0.6$ に近づくと、気泡域において j_c が 0.03 から 0.2 に約 7 倍変化すると、$\varepsilon_{\alpha L} / \varepsilon_{\alpha L}$ も約 7 倍程度の値となるが、j_c が 0.3 m/s でそれ以上増し、流動様式がチャーガン流に変遷すると、$\varepsilon_{\alpha L} / \varepsilon_{\alpha L}$ は j_c の増
加算台以上に急増し、その値は約100にも達する。このε_u/ε_mの急増は、図7の写真の説明のごとく巨大気泡の出現によるものである。他方、空気流束j_eが同じで水束束j_mが変わる場合には、j_eが大きいほどε_u/ε_mは小さい値を示している。これは液相本来の乱れの効果に対し、気泡の乱れに付加される液相の乱れの効果が相対的に小さくなることを示しています。また、気泡に対して、j_e=0.4m/sのε_u/ε_mが他のj_eのそれよりも高めの値を示している。この流れでは、液流束が非常に低い気泡寸法が大きくなくなってしまっても、気泡の蛇行運動が観察であったことが原因と考えられる。

4-3気泡流れにおける液相の乱流拡散係数本節では、流れを気泡流れに制限し、液相の乱流拡散係数を考察する。

Serizawaらは、内径60mmの垂直円筒内の発達した気泡流れにおいて、液相の乱流拡散係数ε_mを線密度によって測定された液相の半径、軸方向の温度分布から求めている。図10は、このSerizawaらの実験結果と本実験結果を比較したものです。縦軸は、ε_m=ε_u/ε_mでε_m=ε_u/ε_mで、二相流における物質あるいは熱の乱流拡散係数を平均流速V_m=j_m/ε_mの単相拡散係数を基準に示す。図10のような流れを次式のように表すことができる。

\[\epsilon_{\text{DL}} = \epsilon_{\text{DL}} + \epsilon_{\text{DE}} \] \hspace{1cm} \text{(22)}

式(20)～(22)より、ε_u/ε_mは次式となる。

\[\epsilon_{\text{DE}} = \frac{\epsilon_{\text{DL}}}{S_{\text{C}}^2} \] \hspace{1cm} \text{(23)}

ここで、S_{C}は乱流シュミット数(=ε_u/ε_m)である。佐藤らはε_u/ε_mの式として次式を提案している。

\[\epsilon_{\text{DL}} = K_{a} \left(\frac{d_{p}}{2} \right)^{2} U_{s} \] \hspace{1cm} \text{(24)}

ここで、K_{a}は定数(=1.2)、aはボイド率、d_{p}は気泡群の代表直径、U_{s}は周囲の流体に対する気泡の相対速度（平均速度とする）である。式(24)を式(23)に代入し、係数K=K_{a}/S_{C}と改めておくと、ε_{DL}は次式となる。

\[\epsilon_{\text{DL}} = K_{a} \left(\frac{d_{p}}{2} \right)^{2} U_{s} \] \hspace{1cm} \text{(25)}

ε_u/ε_m値を気泡の混入による液の増速効果のみを考慮した平均速度V_m(j_m(1-ε_m)/ε_m)の液単相流れの乱流拡散係数として評価し、ε_u/ε_mの測定値から差引けば、式(22)より気泡の乱れ効果を表す乱流拡散係数ε_u/ε_mを推定することができる。この推定値を用いて、係数K_{a}の変更を試みた。その際、ボイド率a、気泡群の代表直径d_{p}および相対速度U_{s}の値が必要であるから、これらを次のようにして求めた。

ボイド率aは現地における画像解析法で測定した。気泡群の代表直径d_{p}は画像データから統計的に決定した。まず、流れが二次元であるから、画像上の各気泡についてその面積に等しい円の直径を測定した。図7に示した写真からも明らかのように気泡寸法は分布している。図10に示したデータからも明らかのように気泡寸法は分布している。測定した各気泡の直径に面積の乗をつけて平均し、その平均値を流れの代表直径d_{p}とした。次に、気泡の速度U_{s}は上流の流れの代表速度d_{p}に

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig10.png}
\caption{気泡流れにおける物質、熱流拡散係数比の比較}
\end{figure}
画像データによる疑似二次元気液相二相流の液相の乱流拡散係数の測定

図11 係数Kの推定結果

対応する気泡の終端速度とし、佐藤らの実験式から求めた。

図11は、上記の方法で求めた式(25)の係数Kの値である。縦軸に係数K、横軸にポイド率αをとり、水の容積流束jvでデータを区別している。黒印のデータ(\(jv=0.4 \text{ m/s}\))を除けば、係数Kは多少のばらつきはあるがほぼ一定の値(\(K \approx 0.8\))となっている。このことは、式(22)の仮定および式(25)が気泡相における液相の物質の乱流拡散係数を評価するのに妥当であること
を示しているとともに、式(24)と式(25)の比較から気泡相の物質拡散と運動量拡散メカニズムが類似していることを示している。

5. す び

二次元二相流の乱流構造の記述法を検討した。すな
わち、比較的大きな直径のもとで狭い幅をもつ環状流
路を製作し、これを用いて近似的に二次元の二相流を

(1) Boube, J. A. and Delhaye, J. M., (Hertsoni, G., 編),
Handbook of Multiphase Systems, (1982), 36, McGraw-
Hill.

(3) Serizawa, A., ほか2名, Int. J. Multiphase Flow, 2-3
(1975), 247.

(4) Hinze, J., Turbulence, 2nd ed., (1975), 428, McGraw-
Hill.

(6) 武藤, 色分析法, (共立出版 97), (1961), 203, 共立出
版.

379.

(8) 佐藤・世古, 機論, 41-351(1975), 3215.

(9) 佐藤・ほか2名, 熊本大学工学部研究報告, 23-3(1974),
43.