<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>メロニックアプローチ定理に対するセミグラフのホモロジーとホモロジーの関係</td>
</tr>
<tr>
<td>バージョン</td>
<td>未指定</td>
</tr>
<tr>
<td>貢献者</td>
<td>阿部 雅</td>
</tr>
<tr>
<td>引用</td>
<td>豊山数学雑誌, 32: 41-57</td>
</tr>
<tr>
<td>発行年</td>
<td>2009</td>
</tr>
<tr>
<td>タイプ</td>
<td>学術論文</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2298/18113</td>
</tr>
</tbody>
</table>

Kumamoto University
Meromorphic approximation theorem with respect to a semigroup of holomorphic line bundles in a Stein space

Makoto Abe*

Abstract. We give a meromorphic approximation theorem with respect to a semigroup of holomorphic line bundles in a reduced Stein space, which generalizes both Théorème 2 of Hirschowitz (Ann. Scuola Norm. Sup. Pisa (3) 25:47–58, 1971) and Theorem 11 of Abe (Ann. Mat. Pura Appl. (4) 184:263–274, 2005).

1. Introduction

Let K be an arbitrary rationally convex compact set of \mathbb{C}^n. Then for every $\varphi \in \mathcal{O}(K)$ and for every $\epsilon > 0$ there exists a rational function h on \mathbb{C}^n such that h is holomorphic near K and $\|\varphi - h\|_K < \epsilon$. Here we denote by $\mathcal{O}(K)$ the set of functions holomorphic near K. This fact is known as the rational approximation theorem of Weil-Oka.

In the literature there are two different definitions of meromorphically convex hull of a compact set K of a reduced complex space X. According to the notation of Hirschowitz [11] the one is hK_X and the other is $H K_X$ (see Sect. 2). In general, there can exist a compact set K of X such that $hK_X \subset

2000 Mathematics Subject Classification. Primary 32E30; Secondary 32E10, 32L15.

Key words and phrases. Stein space, Meromorphic approximation theorem, Meromorphically convex hull, Picard group.

*The author is partly supported by the Grant-in-Aid for Scientific Research (C) no. 20540180 of Japan Society for the Promotion of Science and by the Overseas Advanced Research Practice Support Program of the Ministry of Education, Culture, Science, Sports and Technology of Japan, 2008.
If X is a Stein manifold, then Colțoiu [5] proved that $hK_X = \mathcal{H}K_X$ for every compact set K of X if and only if $\text{Hom}(H_2(X, \mathbb{Z}), \mathbb{Z}) = 0$. If $X = \mathbb{C}^n$, then the set $hK_{\mathbb{C}^n} = \mathcal{H}K_{\mathbb{C}^n}$ moreover coincide with the rationally convex hull of K in \mathbb{C}^n.

Hirschowitz [11, Théorème 2] obtained the following meromorphic approximation theorem which generalizes the rational approximation theorem of Weil-Oka. Let X be a Stein manifold and K a compact set of X such that $hK_X = K$. Then for every $\varphi \in \mathcal{O}(K)$ and for every $\varepsilon > 0$ there exists a meromorphic function $h \in \mathcal{M}(X) \cap \mathcal{O}(K)$ such that $\|\varphi - h\|_K < \varepsilon$.

On the other hand, Abe [1, Theorem 11] proved the following meromorphic approximation theorem, which also generalizes the rational approximation theorem of Weil-Oka. Let X be a reduced Stein space and K a compact set of X such that $hK_X = K$. Then for every $\varphi \in \mathcal{O}(K)$ and for every $\varepsilon > 0$ there exist holomorphic functions $f, g \in \mathcal{O}(X)$ such that the set $\{g = 0\}$ is nowhere dense in X, $g \neq 0$ on K, and $\|\varphi - (f/g)\|_K < \varepsilon$.

In this paper we prove a meromorphic approximation theorem with respect to a semigroup of holomorphic line bundles in a reduced Stein space, which includes both Hirschowitz [11, Théorème 2] and Abe [1, Theorem 11] as two special cases. The main results in this paper were announced without proof in Abe [3].

We first define the generalized meromorphically convex hull $\tilde{K}_{X,G}$ of a compact set K of a reduced complex space X with respect to a subsemigroup G of the Picard group $\text{Pic}(X)$ of X, that is, a set G of holomorphic line bundles on X which is closed under the tensor product (see Sect. 2). Then the main result is as follows.

Let X be a reduced Stein space and G a subsemigroup of $\text{Pic}(X)$. Let K be a compact set of X such that $\tilde{K}_{X,G} = K$. Then for every $\varphi \in \mathcal{O}(K)$ and for every $\varepsilon > 0$ there exist $L \in G$ and holomorphic sections $f, g \in \Gamma(X, \mathcal{O}(L))$ such that the set $\{g = 0\}$ is nowhere dense in X, $g \neq 0$ on K, and $\|\varphi - (f/g)\|_K < \varepsilon$ (see Theorem 5.1).

Acknowledgement. The author thanks Prof. G. Tomassini for the hospitality and for allowing him to stay at Scuola Normale Superiore di Pisa, where he completed the manuscript of this paper.
2. Preliminaries

Throughout this paper complex spaces are always assumed to be reduced and second countable. We denote by \mathcal{O} (resp. \mathcal{M}) the additive sheaf of germs of holomorphic (resp. meromorphic) functions and by \mathcal{O}^* the multiplicative sheaf of invertible germs of holomorphic functions on a complex space.

Let X be a complex space and K a subset of X. Then the set

$$K_x = \{ x \in X \mid f(x) \in f(K) \text{ for every } f \in \mathcal{O}(X) \}$$

is said to be the \textit{meromorphically convex hull} of K in X. We use hereafter the notation K_x of Lupacciolu [14] instead of the notation μK_X of Hirschowitz [11, p. 49]. The set K_x is contained in the \textit{holomorphically convex hull}

$$K_x = \{ x \in X \mid |f(x)| \leq \|f\|_K \text{ for every } f \in \mathcal{O}(X) \}$$

of K in X. The set K_x is closed in X if K is compact. Therefore the set K_x is compact if X is holomorphically convex and K is compact.

Let X be a complex space. The group $\text{Pic}(X) := H^1(X, \mathcal{O}^*)$ is said to be the \textit{Picard group} of X and is identified with the set of holomorphic line bundles on X. Let G be a subsemigroup of $\text{Pic}(X)$, that is, a set of holomorphic line bundles on X which is closed under the tensor product. Let K be a subset of X. Then the set

$$K_{x,G} = \{ x \in X \mid \text{for every } L \in G \text{ and for every } s \in \Gamma(X, \mathcal{O}(L)) \text{ such that } s(x) = 0 \text{ we have that } \{s = 0\} \cap K \neq \emptyset \}$$

is said to be the (generalized) \textit{meromorphically convex hull} of K in X with respect to G. We have that $\tilde{K}_{x,G} = \bigcap_{\mathcal{A} \in \mathcal{A}(G,K)} (X \setminus A)$, where

$$\mathcal{A}(G,K) := \{ A \mid \text{there exist } L \in G \text{ and } s \in \Gamma(X, \mathcal{O}(L)) \text{ such that } A = \{s = 0\} \text{ and } A \cap K = \emptyset \}.$$

For simplicity we write

$$\tilde{K}_{x,L} := \tilde{K}_{x,\{L^\nu \mid \nu \in \mathbb{N}\}} \text{ and } \mathcal{A}(L,K) := \mathcal{A}(\{L^\nu \mid \nu \in \mathbb{N}\}, K).$$
for every $L \in \text{Pic}(X)$. Let 1_X denote the unit element of $\text{Pic}(X)$, that is, the trivial holomorphic line bundle on X. We have that

$$\tilde{K}_X = \tilde{K}_X,1_X = \tilde{K}_X,\{1_X\}.$$

We have the following proposition, the proof of which is easy and is omitted.

Proposition 2.1. Let X be a complex space and G a subsemigroup of $\text{Pic}(X)$. Let K be a subset of X and let $M := \tilde{K}_{X,G}$. Then we have that $\tilde{M}_{X,G} = M$.

A subset A of a complex space X is said to be a **hypersurface** in X if there exists a coherent principal analytic ideal sheaf \mathcal{I} on X such that $N(\mathcal{I}) = A$ and A is nowhere dense in X. If X is a complex manifold, then a subset A of X is a hypersurface in X if and only if A is an analytic set of X such that $\text{codim}_x A = 1$ for every $x \in A$ (see Hitotumatu [12, p. 155] or Taylor [25, p. 97]).

Let X be a complex space and K a subset of X. According to the notation of Hirschowitz [11, p. 50] let

$$h_K := \{x \in X \mid \text{for every hypersurface } A \text{ in } X \text{ such that } x \in A \text{ we have that } A \cap K \neq \emptyset \}.$$

Then we have that $h_K = \bigcap_{A \in \mathcal{H}(K)} (X \setminus A)$, where $\mathcal{H}(K)$ denotes the set of hypersurfaces in X which does not intersect K.

Since every coherent principal analytic ideal sheaf \mathcal{I} on a complex space X such that $N(\mathcal{I})$ is nowhere dense in X defines a holomorphic line bundle L on X and a global section $s \in \Gamma(X, \mathcal{O}(L))$ such that $\{s = 0\} = N(\mathcal{I})$, we have that $\mathcal{H}(K) \subset \mathcal{J}(\text{Pic}(X), K)$ for every $K \subset X$.

Proposition 2.2. Let X be a Stein space without isolated points. Then for every subset K of X we have that $h_K = \tilde{K}_{X,\text{Pic}(X)}$.

Proof. Since $\mathcal{H}(K) \subset \mathcal{J}(\text{Pic}(X), K)$, we have that $\tilde{K}_{X,\text{Pic}(X)} \subset h_K$. Let $x \notin \tilde{K}_{X,\text{Pic}(X)}$. Then there exist $L \in \text{Pic}(X)$ and $s \in \Gamma(X, \mathcal{O}(L))$ such that $x \in A := \{s = 0\}$ and $A \cap K = \emptyset$. Let $\Lambda := \{\lambda \in \Lambda \mid s \neq 0 \text{ on } X_\lambda\}$, $\Lambda'' := \Lambda \setminus \Lambda'$, and $X' := \bigcup_{\lambda \in \Lambda'} X_\lambda$. Take a point $p_\lambda \in \left(X_\lambda \setminus \left(\bigcup_{\mu \neq \lambda} X_\mu\right)\right)$
{x} for every $\lambda \in \Lambda''$. Then $Z := X' \cup \{x\}$, $P := \{p_\lambda \mid \lambda \in \Lambda''\}$, and $S := Z \cup P$ are analytic sets of X. By the Cartan theorem B the restriction map

$$\Gamma(X, \mathcal{O}(L)) \to \Gamma(X, \mathcal{O}(L)/i(S) \cdot \mathcal{O}(L)) \cong \Gamma(Z, \mathcal{O}(L|_Z)) \oplus \mathbb{C}^P$$

is surjective, where $i(S)$ denotes the maximal defining ideal sheaf of S. Therefore there exists $t \in \Gamma(X, \mathcal{O}(L))$ such that $t|_Z = s|_Z$ and $t(p_\lambda) \neq 0$ for every $\lambda \in \Lambda''$. Let \mathcal{I} be the analytic ideal sheaf defined by t. Then \mathcal{I} is principal at every point of X and the set $B := \{t = 0\} = N(\mathcal{I})$ is nowhere dense in X. Since $K \cup \{x\} \subset Z$, we have that $x \in B$ and $B \cap K = \emptyset$. It follows that $x \not\in hK_X$. Thus we proved that $hK_X \subset K_{X,G} \subset K_X$.

Let X be a Stein space without isolated points and G a subsemigroup of $\text{Pic}(X)$ such that $1_X \in G$. Let K be a compact set of X. Then the set $K_{X,G}$ is compact (see Proposition 4.1 and Corollary 4.5) and we have that $hK_X \subset K_{X,G} \subset K_X$.

3. Lemmas

Lemma 3.1. Let X be a Stein space and let $L \in \text{Pic}(X)$. Let $s \in \Gamma(X, \mathcal{O}(L))$ and assume that the set $A := \{s = 0\}$ is nowhere dense in X. Then for every $\varphi \in \mathcal{O}(X \setminus A)$, for every compact set K of $X \setminus A$, and for every $\varepsilon > 0$ there exist $N \in \mathbb{N}$ and $u \in \Gamma(X, \mathcal{O}(L^N))$ such that $\|\varphi - (u/s^N)\|_K < \varepsilon$.

Proof. Let $\{a_{ij}\} \subset Z^1(\{U_i\}_{i \in I}, \mathcal{O}^*)$ be a system of transition functions of L. Let $s \cong \{s_i\}$ be such that $s_i = a_{ij}s_j$ on $U_i \cap U_j$ for every $i, j \in I$. The set $\{s_i = 0\}$ is nowhere dense in U_i for every $i \in I$. Then the subsheaf \mathcal{F} of \mathcal{M} on X is defined by $\mathcal{F} = (1/s_i) \cdot \mathcal{O}$ on U_i for every $i \in I$. Take an arbitrary $\varphi \in \mathcal{O}(X \setminus A)$, an arbitrary compact set K of $X \setminus A$, and an arbitrary $\varepsilon > 0$. Take an analytic polyhedron W of X such that $K \subset W$, where W is of the form

$$W = G \cap \{ |f_1| < 1, |f_2| < 1, \ldots, |f_m| < 1 \} \subset G,$$

G is an open set of X and $f_1, f_2, \ldots, f_m \in \mathcal{O}(X)$. Then the induced map

$$(f_1, f_2, \ldots, f_m) : W \to \Delta^m$$

is proper, where $\Delta := \{ t \in \mathbb{C} \mid |t| < 1 \}$.
Kaup-Kaup [13, p. 226]). Since \(\mathcal{F} \) is coherent (see Grauert-Remmert [9, p. 119]), there exist finitely many sections \(h_1, h_2, \ldots, h_n \in \Gamma(X, \mathcal{F}) \) such that the germs \((h_1)_x, (h_2)_x, \ldots, (h_n)_x \) generate \(\mathcal{F}_x \) as an \(\mathcal{O}_x \)-module for every \(x \in W \) by the Cartan theorem A. Let \(t_{iv} := s_i h_{iv} \in \mathcal{O}(U_i) \) for every \(i \in I \) and for every \(\nu = 1, 2, \ldots, n \). Take an arbitrary \(x \in W \cap A \). Take an index \(i \in I \) such that \(x \in U_i \). Since \(1/(s_i)_x \in \mathcal{F}_x \), there exist \((g_1)_x, (g_2)_x, \ldots, (g_n)_x \in \mathcal{O}_x \) such that \(1/(s_i)_x = \sum_{\nu=1}^{n} (g_{\nu})_x (h_{\nu})_x \). Since we have that \(\sum_{\nu=1}^{n} g_{\nu} t_{iv} = 1 \) near \(x \), there exists \(\nu_0 \in \{1, 2, \ldots, n\} \) such that \(t_{iv_0}(x) \neq 0 \). On the other hand \(s_i(x) = 0 \). Therefore

\[
\lim_{y \to x} \frac{|h_{\nu_0}(y)|}{|s_i(y)|} = +\infty.
\]

It follows that the induced map \((f_1, f_2, \ldots, f_m, h_1, h_2, \ldots, h_n) : W \setminus A \to \Delta^m \times \mathbb{C}^n \) is proper. There exist \(l \in \mathbb{N} \) and a holomorphic map \(\theta = (\theta_1, \theta_2, \ldots, \theta_l) : X \to \mathbb{C}^l \) such that \(\theta \) is injective and regular\(^1\) on \(W \) (see Kaup-Kaup [13, p. 233]). Let

\[
\eta := (\theta_1, \theta_2, \ldots, \theta_l, f_1, f_2, \ldots, f_m, h_1, h_2, \ldots, h_n) : X \setminus A \to \mathbb{C}^{l+m+n}.
\]

Then the induced map \(\eta : W \setminus A \to \mathbb{C}^l \times \Delta^m \times \mathbb{C}^n \) is injective, regular, and proper on \(W \setminus A \). Therefore \(B := \eta(W \setminus A) \) is an analytic set of \(\mathbb{C}^l \times \Delta^m \times \mathbb{C}^n \) and the induced map \(\eta : W \setminus A \to B \) is biholomorphic. Since the function \(\varphi \circ \eta^{-1} \) is holomorphic on \(B \), there exists a function \(\alpha \in \mathcal{O}(\mathbb{C}^l \times \Delta^m \times \mathbb{C}^n) \) such that \(\alpha|_B = \varphi \circ \eta^{-1} \). Since \(\varphi(K) \) is a compact set of \(\mathbb{C}^l \times \Delta^m \times \mathbb{C}^n \), there exists a polynomial function \(\beta \) on \(\mathbb{C}^{l+m+n} \) such that \(\|\alpha - \beta\|_{\varphi(K)} < \varepsilon \). Since \(\beta \circ \eta \) is a polynomial of \(\theta_1, \theta_2, \ldots, \theta_l, f_1, f_2, \ldots, f_m, h_1, h_2, \ldots, h_n \), there exists \(N \in \mathbb{N} \) and a polynomial \(u_i \) of \(\theta_1, \theta_2, \ldots, \theta_l, f_1, f_2, \ldots, f_m, t_{i_1}, t_{i_2}, \ldots, t_{i_n}, s_i \) such that \(\beta \circ \eta = u_i/s_i^N \) on \(U_i \) for every \(i \in I \) and the number \(N \) does not depend on the choice of the index \(i \). Then we have that \(u_i = (s_i/s_j)^N u_j = a_{ij}^N u_j \) on \(U_i \cap U_j \) for every \(i, j \in I \). It follows that \(u \cong \{u_i\} \in \Gamma(X, L^N) \) and we have that \(\|\varphi - (u/s^N)\|_K < \varepsilon \). \(\square \)

\(^1\) A holomorphic map \(\varphi : X \to Y \) between complex spaces \(X \) and \(Y \) is said to be regular at \(x \in X \) if the map \((d\varphi)_x : m_\varphi(x)/m^2_\varphi(x) \to m_\varphi(x)/m^2_\varphi(x), h_{\varphi(x)} + m^2_\varphi(x) \mapsto (h \circ \varphi)_x + m^2_\varphi(x) \), is surjective (see Grauert [7, p. 333]).
Lemma 3.2. Let X be a Stein space. Let $L \in \text{Pic}(X)$ and $s \in \Gamma(X, \mathcal{O}(L))$. Let $\{X_\lambda\}_{\lambda \in \Lambda}$ be the set of irreducible components of X, $\Lambda' := \{ \lambda \in \Lambda \mid s \not\equiv 0 \text{ on } X_\lambda \}$, and $X' := \bigcup_{\lambda \in \Lambda'} X_\lambda$. Then there exists $t \in \Gamma(X, \mathcal{O}(L))$ such that $t|_{X'} = s|_{X'}$ and the set $\{ t = 0 \}$ is nowhere dense in X.

Proof. Let $\Lambda'' := \Lambda \setminus \Lambda'$. Take a point $p_\lambda \in X_\lambda \setminus \left(\bigcup_{\mu \not\equiv \lambda} X_\mu \right)$ for every $\lambda \in \Lambda''$. Then $P := \{ p_\lambda \mid \lambda \in \Lambda'' \}$ and $S := X' \cup P$ are analytic sets in X. By the Cartan theorem B the restriction map

$$\Gamma(X, \mathcal{O}(L)) \rightarrow \Gamma(X, \mathcal{O}(L)/i(S) \cdot \mathcal{O}(L)) \cong \Gamma(X', \mathcal{O}(L|_{X'})) \oplus \mathbb{C}^P$$

is surjective, where $i(S)$ denotes the maximal defining ideal sheaf of S. Therefore there exists $t \in \Gamma(X, \mathcal{O}(L))$ such that $t|_{X'} = s|_{X'}$ and $t(p_\lambda) \neq 0$ for every $\lambda \in \Lambda''$. Then the set $\{ t = 0 \}$ is nowhere dense in X. □

Lemma 3.3 (cf. Grauert-Remmert [8, p. 129]) Let X be a Stein space. Let $L \in \text{Pic}(X)$ and $s \in \Gamma(X, \mathcal{O}(L))$. Then the open set $X \setminus \{ s = 0 \}$ is Stein.

Proof. Let $\{X_\lambda\}_{\lambda \in \Lambda}$ be the set of irreducible components of X, $\Lambda' := \{ \lambda \in \Lambda \mid s \not\equiv 0 \text{ on } X_\lambda \}$, and $X' := \bigcup_{\lambda \in \Lambda'} X_\lambda$. By Lemma 3.2 there exists $t \in \Gamma(X, \mathcal{O}(L))$ such that $t|_{X'} = s|_{X'}$ and the set $B := \{ t = 0 \}$ is nowhere dense in X. By the proof of Lemma 3.1 there exists $h \in \mathcal{O}(X \setminus B)$ such that $\lim_{y \to x, y \in X \setminus B} |h(y)| = +\infty$ for every $x \in B$. It follows that $X \setminus B$ is Stein and therefore $X \setminus \{ s = 0 \} = X' \cap (X \setminus B)$ is also Stein. □

Lemma 3.4. Let X be a Stein space and G a subsemigroup of $\text{Pic}(X)$. Then for every compact set K of X we have that

$$K_{X,G} = \bigcap_{A \in \mathcal{Y}(G,K)} K_{X \setminus A}.$$

Proof. We have that $K_{X,G} = \bigcap_{A \in \mathcal{Y}(G,K)} (X \setminus A) \supset \bigcap_{A \in \mathcal{Y}(G,K)} K_{X \setminus A}$. We prove the other inclusion. Let $x \in K_{X,G}$. Take an arbitrary $A \in \mathcal{Y}(G,K)$. There exist $L \in G$ and $s \in \Gamma(X, \mathcal{O}(L))$ such that $A = \{ s = 0 \}$ and $A \cap K = \emptyset$. Since $x \in K_{X,G}$, we have that $x \in X \setminus A$.

Meromorphic approximation theorem with respect to a semigroup 47
Assume that \(x \notin \tilde{K}_{X \setminus A} \). Then there exists \(\varphi \in \mathcal{O}(X \setminus A) \) such that \(\varphi(x) \neq \varphi(K) \). Let \(\{X_\lambda\}_{\lambda \in \Lambda} \) be the set of irreducible components of \(X \), \(\Lambda' := \{ \lambda \in \Lambda \mid s \neq 0 \text{ on } X_\lambda \} \), and \(X' := \bigcup_{\lambda \in \Lambda'} X_\lambda \). By Lemma 3.2 there exists \(t \in \Gamma(X, \mathcal{O}(L)) \) such that \(t|_{X'} = s|_{X'} \) and the set \(B := \{ t = 0 \} \) is nowhere dense in \(X \). By Lemma 3.3 the open set \(X \setminus B \) is Stein. Since \(X \setminus A = X' \cap (X \setminus B) \) is an analytic set of \(X \setminus B \), there exists \(\Psi \in \mathcal{O}(X \setminus B) \) such that \(\Psi|_{X \setminus A} = \varphi - \varphi(x) \). By Lemma 3.1 there exist \(N \in \mathbb{N} \) and \(u \in \Gamma(X, \mathcal{O}(L^N)) \) such that \(\|\Psi - (u/t^N)\|_{K \cup \{x\}} < \delta/2 \), where \(\delta := \min_{y \in K} |\Psi(y)| = \min_{y \in K} |\varphi(y) - \varphi(x)| > 0 \). Let \(h := u/t^N \). Since
\[
|h(y)| \geq |\Psi(y)| - |\Psi(y) - h(y)| > \delta - \delta/2 = \delta/2 > |h(x)|
\]
for every \(y \in K \), we have that \(h - h(x) \neq 0 \text{ on } K \). Therefore \(\{u' = 0\} \cap K = \emptyset \), where \(u' := u - h(x)t^N \). Since \(L^N \in G \) and \(u' \in \Gamma(X, \mathcal{O}(L^N)) \), and \(x \in \{u' = 0\} \), we have that \(x \notin \tilde{K}_{X,G} \), which is a contradiction. Thus we proved that \(\tilde{K}_{X,G} \subset \bigcap_{\lambda \in \Lambda} \tilde{K}_{X \setminus \lambda} \).

4. Compactness of the meromorphically convex hull

We have the following proposition on the compactness of the meromorphically convex hull of a compact set of a Stein space.

Proposition 4.1. Let \(X \) be a Stein space, \(G \) a subsemigroup of \(\text{Pic}(X) \), and \(K \) a compact set of \(X \). Then we have the following two statements.

i) If \(\mathcal{S}(G, K) \neq \emptyset \), then the set \(\tilde{K}_{X,G} \) is compact.

ii) If \(\mathcal{S}(G, K) = \emptyset \), then \(\tilde{K}_{X,G} = X \).

Proof. i). If \(A \in \mathcal{S}(G, K) \), then \(X \setminus A \) is Stein by Lemma 3.3 and therefore \(\tilde{K}_{X \setminus A} \) is compact. It follows that we have the assertion by Lemma 3.4. ii). Clear. □

There can exist a Stein space \(X \), a subsemigroup \(G \) of \(\text{Pic}(X) \), and a compact set \(K \) of \(X \) such that \(\mathcal{S}(G, K) = \emptyset \). We have the following example of Stein [23, p. 743] (see also Hirschowitz [11, p. 48]). We denote by \(i \) the imaginary unit.
Example 4.2. Let

\[X := (\mathbb{C}^*)^2 \subset \mathbb{C}^2, \quad A := \{(z, w) \in X \mid z = w^1\}, \quad \text{and} \]

\[K := \{(z, w) \in \mathbb{C}^2 \mid |z| = |w| = 1\}. \]

Let \(L \) be the holomorphic line bundle on \(X \) associated to the divisor \(A \). Then we have that \(\mathcal{H}(L, K) = 0 \).

Proof. We have that \(\langle A, K \rangle = 1 \), where the angle brackets denote the intersection number in \(\mathbb{Z} \). Assume that \(\mathcal{H}(L, K) \neq 0 \). Then there exist \(N \in \mathbb{N} \) and \(s \in \Gamma(X, \mathcal{O}(L^N)) \) such that \(\{s = 0\} \cap K = \emptyset \). Since \(L^N \) is holomorphically trivial on \(X \setminus \{s = 0\} \), we have that \(N \langle A, K \rangle = \langle NA, K \rangle = 0 \). It is a contradiction. □

We also have the following example of Oka [19] (see also Nishino [17, p. 92]), the proof of which is the same as above.

Example 4.3. Let

\[X := \{(z, w) \in \mathbb{C}^2 \mid \frac{2}{3} < |z| < 1, \quad \frac{2}{3} < |w| < 1\} \subset \mathbb{C}^2, \]

\[A := \{(z, w) \in X \mid \Im(z) \geq 0, \quad w - z + 1 = 0\}, \quad \text{and} \]

\[K := \{(z, w) \in \mathbb{C}^2 \mid |z| = |w| = \frac{5}{6}\}. \]

Let \(L \) be the holomorphic line bundle on \(X \) associated to the divisor \(A \). Then we have that \(\mathcal{H}(L, K) = 0 \).

We have the following characterization for a subsemigroup \(G \) of \(\text{Pic}(X) \) such that \(\mathcal{H}(G, K) \neq \emptyset \) for every compact set \(K \) of \(X \).

Proposition 4.4. Let \(X \) be a Stein space and \(G \) a subsemigroup of \(\text{Pic}(X) \). Then the following two conditions are equivalent.

1. For every compact set \(K \) of \(X \) we have that \(\mathcal{H}(G, K) \neq \emptyset \).

2. For every relatively compact open set \(D \) of \(X \) there exists \(L \in G \) such that \(L|_D = 1_D \).

\(^2\) For the definition of the intersection number see for example Hamano [10, Definition 2.3].
Proof. (1) \implies (2). Let D be an arbitrary relatively compact open set of X. By assumption there exist $L \in G$ and $s \in \Gamma(X, \mathcal{O}(L))$ such that $\{s = 0\} \cap \overline{D} = \emptyset$. Since $s \neq 0$ on D, the bundle L is holomorphically trivial on D.

(2) \implies (1). Let K be an arbitrary compact set of X. Take an $\mathcal{O}(X)$-convex Stein open set D of X such that $K \subset D \subset X$. Since \tilde{K}_D is compact and D is not compact, there exists a point $p \in D \setminus K_D$ and there exists $f \in \mathcal{O}(D)$ such that $f(p) \notin f(K)$. Then $\delta := \min_{z \in K} |f(z) - f(p)| > 0$. By assumption there exists $L \in G$ such that L is holomorphically trivial on D. Since the image of the restriction map $\Gamma(X, \mathcal{O}(L)) \to \Gamma(D, \mathcal{O}(L)) \cong \mathcal{O}(D)$ is dense in $\mathcal{O}(D)$ (see Markoe [15, Lemma 1.3]), there exists $s \in \Gamma(X, \mathcal{O}(L))$ such that $\|f - f(p) - s|_D\|_K < \delta/2$. Then we have that $A \cap K = \emptyset$, where $A := \{s = 0\}$. It follows that $A \in \mathcal{S}(G, K)$ and therefore $\mathcal{S}(G, K) \neq \emptyset$. \hfill \Box

Corollary 4.5. Let X be a Stein space and G a subsemigroup of Pic(X). If $1_X \in G$, then for every compact set K of X we have that $\mathcal{S}(G, K) \neq \emptyset$.

The converse of Corollary 4.5 is not true. There exists a Stein manifold X such that $\text{Hom}(H_2(X, \mathbb{Z}), \mathbb{Z}) = 0$ and $\text{Pic}(X) \cong H^2(X, \mathbb{Z})$ contains a nontorsion element L (see Coltoiu [5, Examples 1–4]). By Coltoiu [5, Theorem 1] the subsemigroup $G := \{L^\nu \mid \nu \in \mathbb{N}\}$ of Pic(X) satisfies condition (2) in Proposition 4.4. Then $\mathcal{S}(L, K) \neq \emptyset$ for every compact set K of X whereas $1_X \notin G$.

5. Theorem and corollaries

We have the following meromorphic approximation theorem in a Stein space with respect to a subsemigroup of the Picard group.

Theorem 5.1. Let X be a Stein space and G a subsemigroup of Pic(X). Let K be a compact set of X such that $\tilde{K}_{X,G} = K$. Then for every $\varphi \in \mathcal{O}(K)$ and for every $\varepsilon > 0$ there exist $L \in G$ and $f, g \in \Gamma(X, \mathcal{O}(L))$ such that the set $\{g = 0\}$ is nowhere dense in X, $g \neq 0$ on K, and $\|\varphi - (f/g)\|_K < \varepsilon$.

Proof. We use the method of the proof of Hirschowitz [11, Théorème 2]. Take an open set D of X such that $\varphi \in \mathcal{O}(D)$ and $K \subset D$. Since the
holomorphically convex hull \hat{K}_X of K in X is compact, the set $M := \hat{K}_X \setminus D$ is also compact. Since

$$
\bigcap_{A \in \mathcal{U}(G, K)} \hat{K}_X \setminus A \subset \bigcap_{A \in \mathcal{U}(G, K)} (X \setminus A) = \hat{K}_X \setminus G = K \subset D,
$$

we have that $M \cap \left(\bigcap_{A \in \mathcal{U}(G, K)} \hat{K}_X \setminus A \right) = \emptyset$. If $A \in \mathcal{S}(G, K)$, then by Lemma 3.3 the open set $X \setminus A$ is Stein and therefore the set $\hat{K}_X \setminus A$ is compact. It follows that there exist finitely many $A_1, A_2, \ldots, A_m \in \mathcal{S}(G, K)$ such that $M \cap \left(\bigcap_{\mu=1}^m \hat{K}_X \setminus A_\mu \right) = \emptyset$. For every $\mu = 1, 2, \ldots, m$ there exist $L_\mu \in G$ and $s_\mu \in \Gamma(X, \mathcal{O}(L_\mu))$ such that $A_\mu = \{ s_\mu = 0 \}$ and $K \cap A_\mu = \emptyset$. Then we have that $L := L_1 \otimes L_2 \otimes \cdots \otimes L_m \in G$, $s := s_1 \otimes s_2 \otimes \cdots \otimes s_m \in \Gamma(X, \mathcal{O}(L))$, $A := \{ s = 0 \} = \bigcup_{\mu=1}^m A_\mu$, $K \cap A = \emptyset$, and

$$
\hat{K}_X \setminus A \subset \left(\bigcap_{\mu=1}^m \hat{K}_X \setminus A_\mu \right) \cap \hat{K}_X \subset (X \setminus M) \cap \hat{K}_X \subset D.
$$

By the holomorphic approximation theorem of Weil-Oka (see Grauert [6, Satz 6] or Kaup-Kaup [13, p. 296]) there exists $\psi \in \mathcal{O}(X \setminus A)$ such that $\| \psi - \hat{\psi} \|_{\hat{K}_X \setminus A} < \epsilon/2$. Let $\{X_\lambda\}_{\lambda \in \Lambda}$ be the set of irreducible components of X, $\Lambda' := \{ \lambda \in \Lambda \mid s \neq 0 \text{ on } X_\lambda \}$, and $X' := \bigcup_{\lambda \in \Lambda'} X_\lambda$. By Lemma 3.2 there exists $t \in \Gamma(X, \mathcal{O}(L))$ such that $t|_{X'} = s|_{X'}$ and the set $B := \{ t = 0 \}$ is nowhere dense in X. Since $X \setminus B$ is Stein by Lemma 3.3 and $X \setminus A = X' \cap (X \setminus B)$ is an analytic set of $X \setminus B$, we have that $\hat{K}_{X \setminus A} = \hat{K}_{X \setminus B}$ and there exists $\Psi \in \mathcal{O}(X \setminus B)$ such that $\Psi|_{X \setminus A} = \psi$. By Lemma 3.1 there exist $N \in \mathbb{N}$ and $u \in \Gamma(X, \mathcal{O}(L^N))$ such that $\| \Psi - (u/t^N) \|_K < \epsilon/2$. It follows that

$$
\| \varphi - (u/t^N) \|_K \leq \| \varphi - \psi \|_K + \| \Psi - (u/t^N) \|_K
= \| \varphi - \psi \|_{\hat{K}_X \setminus A} + \| \Psi - (u/t^N) \|_K
< \epsilon/2 + \epsilon/2 = \epsilon
$$

and we have that $L^N \in G$, $t^N \in \Gamma(X, \mathcal{O}(L^N))$, $\{ t^N = 0 \} = B$, and $t^N \neq 0$ on K. □
Corollary 5.2. Let X be a Stein space, D an open set of X, and K a compact set of D. Let G be a subsemigroup of $\text{Pic}(X)$ such that $\mathcal{S}(G, K) \neq \emptyset$. Then the following two conditions are equivalent.

1. The set $\tilde{K}_{X,G} \cap D$ is compact.

2. $\tilde{K}_{X,G} \subset D$.

Proof. (1) \rightarrow (2). Let $M := \tilde{K}_{X,G}$, $M_1 := M \cap D$, and $M_2 := M \cap (X \setminus D)$. By assumption the set M_1 is compact. Since M is compact by Proposition 4.1, the set M_2 is also compact. Therefore there exist open sets U_1 and U_2 of X such that $M_1 \subset U_1$, $M_2 \subset U_2$, and $U_1 \cap U_2 = \emptyset$. Let $U := U_1 \cup U_2$. Let $\varphi \in \mathcal{O}(U)$ be the function defined by $\varphi = \nu$ on U_{ν} for each $\nu = 1, 2$. Since $\tilde{M}_{X,G} = M$ by Proposition 2.1, there exist $L \in G$ and $s, t \in \Gamma(X, \mathcal{O}(L))$ such that $\{t = 0\}$ is nowhere dense in X, $t \neq 0$ on M, and $\|\varphi - (s/t)\|_M < 1/2$ by Theorem 5.1. Assume that $M_2 \neq \emptyset$ and take a point $p \in M_2$. Let $h := s/t \in \mathcal{M}(X)$ and $u := s - h(p)t \in \Gamma(X, \mathcal{O}(L))$. Since

$$
\|h - h(p)\|_{M_1} = \|1 - (1 - h) + (2 - h(p))\|_{M_1}
\geq 1 - \|1 - h\|_{M_1} - |2 - h(p)|
\geq 1 - 2\|\varphi - h\|_M > 0,
$$

we have that $h - h(p) \neq 0$ on M_1. It follows that $u \neq 0$ on K. Since $u(p) = 0$, we have that $p \notin M$. It is a contradiction. It follows that $M_2 = \emptyset$ and therefore $M \subset D$.

(2) \rightarrow (1). The assertion is clear because the set $\tilde{K}_{X,G}$ is compact by Proposition 4.1.

The following Corollary 5.3 generalizes Hirschowitz [11, Théorème 2].

Corollary 5.3. Let X be a Stein space without isolated points. Let K be a compact set of X such that $hK_X = K$. Then for every $\varphi \in \mathcal{O}(K)$ and for every $\varepsilon > 0$ there exists $h \in \mathcal{M}(X) \cap \mathcal{O}(K)$ such that $\|\varphi - h\|_K < \varepsilon$.

Proof. By Proposition 2.2 we have that $hK_X = \tilde{K}_{X,\text{Pic}(X)}$. Then we have the assertion by Theorem 5.1.
Corollary 5.4. Let X be a Stein space and let $L \in \text{Pic}(X)$. Let K be a compact set of X such that $K_X, L = K$. Then for every $\varphi \in \mathcal{O}(K)$ and for every $\varepsilon > 0$ there exist $N \in \mathbb{N}$ and $f, g \in \Gamma(X, \mathcal{O}(L^N))$ such that the set \{\varphi = 0\} is nowhere dense in X, $g \neq 0$ on K, and $\|\varphi - (f/g)\|_{L^N} < \varepsilon$.

Proof. We have the assertion by Theorem 5.1.

Corollary 5.5. Let X be a Stein space. Let K be a compact set of X such that $K_X = K$. Then for every $\varphi \in \mathcal{O}(K)$ and for every $\varepsilon > 0$ there exist $f, g \in \mathcal{O}(X)$ such that the set \{\varphi = 0\} is nowhere dense in X, $g \neq 0$ on K, and $\|\varphi - (f/g)\|_{L^N} < \varepsilon$.

Proof. We have the assertion by Corollary 5.4.

Thus we obtained a different proof of Abe [1, Theorem 11]. We also have the following Corollary 5.6 which generalizes Nguyen [16, Lemma 2.2].

Corollary 5.6. Let S be a Stein manifold and X an open set of S. Let K be a compact set of X such that $K_X = K$. Then for every $\varphi \in \mathcal{O}(K)$ and for every $\varepsilon > 0$ there exist $f, g \in \mathcal{O}(X)$ such that $g \neq 0$ on K and $\|\varphi - (f/g)\|_{L^N} < \varepsilon$.

Proof. We first consider the case when X is connected. Let $\pi' : X' \to S$, $\lambda : X \to X'$ be the envelope of holomorphy of the univalent domain $i : X \to Z$. Let $M := \lambda(K)$. Let $x' \in \tilde{M}_X \cap \lambda(X)$. There exists $x \in X$ such that $\lambda(x) = x'$. Then we have that $x \in \tilde{K}_X = K$ because for every $f \in \mathcal{O}(X)$ there exists $f' \in \mathcal{O}(X')$ such that $f = f' \circ \lambda$ and we have that $f(x) = f'(x') \in f'(M) = f(K)$. It follows that $x' \in M$ and therefore $\tilde{M}_X \cap \lambda(X) \subset M$. Conversely it is clear that $M \subset \tilde{M}_X \cap \lambda(X)$. It follows that $\tilde{M}_X \cap \lambda(X) = M$. Since X' is Stein (see Adachi et al. [4, Lemma 3]) and $\lambda(X)$ is an open set of X', we have that $\tilde{M}_X = M$ by Corollary 5.2. Since $\lambda : X \to \lambda(X)$ is biholomorphic, the function $\varphi \circ \lambda^{-1}$ is holomorphic near M. By Corollary 5.5 there exist $f', g' \in \mathcal{O}(X')$ such that $g' \neq 0$ on M and $\|\varphi \circ \lambda^{-1} - (f'/g')\|_{L^N} < \varepsilon$. Let $f := f' \circ \lambda$ and $g := g' \circ \lambda$. Then we have that $g \neq 0$ on K and $\|\varphi - (f/g)\|_{L^N} < \varepsilon$. Next we consider the general case. Let Z be an arbitrary connected component of X. Let $L := K \cap Z$. Then
we have that $\tilde{L}_Z = \tilde{L}_X \cap Z \subset \tilde{K}_X \cap Z = K \cap Z = L$ and therefore $\tilde{L}_Z = L$. Thus the assertion is reduced to the case when X is connected.

We denote by $\mathbb{C}[z_1, z_2, \ldots, z_n]$ the algebra of polynomial functions on \mathbb{C}^n. A compact set K of \mathbb{C}^n is said to be rationally convex in \mathbb{C}^n if $\tilde{K}_{\mathbb{C}[z_1, z_2, \ldots, z_n]} = K$, where

$$\tilde{K}_{\mathbb{C}[z_1, z_2, \ldots, z_n]} := \{x \in \mathbb{C}^n \mid f(x) \in f(K) \text{ for every } f \in \mathbb{C}[z_1, z_2, \ldots, z_n]\}$$

is the rationally convex hull of K in \mathbb{C}^n. We have the following rational approximation theorem of Weil-Oka (see Oka [18, p. 254] and Stolzenberg [24, p. 283]).

Corollary 5.7. Let K be a rationally convex compact set of \mathbb{C}^n. Then for every $\varphi \in \mathcal{O}(K)$ and for every $\varepsilon > 0$ there exists a rational function h on \mathbb{C}^n holomorphic in a neighborhood of K such that $\|\varphi - h\|_K < \varepsilon$.

Proof. Since $\tilde{K}_{\mathbb{C}^n} = \tilde{K}_{\mathbb{C}[z_1, z_2, \ldots, z_n]} = K$ (see Abe [1, p. 265]), there exist $f, g \in \mathcal{O}(\mathbb{C}^n)$ such that $g \neq 0$ on K and $\|\varphi - (f/g)\|_K < \varepsilon/2$ by Corollary 5.5. Since $\mathbb{C}[z_1, z_2, \ldots, z_n]$ is dense in $\mathcal{O}(\mathbb{C}^n)$, there exist $\lambda, \mu \in \mathbb{C}[z_1, z_2, \ldots, z_n]$ such that $\|f - \lambda\|_K < \varepsilon/(4C)$ and $\|g - \mu\|_K < \min\{\varepsilon/(4C), \min_K |g|/2\}$, where $C := 2 \max\{\|f\|_K, \|g\|_K\}/(\min_K |g|)^2$. Then we have that $|\mu| > \min_K |g|/2 > 0$ on K and $\|f/g\) - (\lambda/\mu)\|_K < \varepsilon/2$. It follows that the rational function $h := \lambda/\mu$ is holomorphic near K and we have that $\|\varphi - h\|_K < \varepsilon$.

Since every compact set K of \mathbb{C} is rationally convex in \mathbb{C}, the rational approximation theorem of Weil-Oka above generalizes the weak rational approximation theorem of Runge in \mathbb{C} (see Rudin [22, Theorem 13.6]). On the other hand see Abe [2] for a trial to generalize the strong rational approximation theorem (see Rudin [22, Theorem 13.9]).

3 Oka [18] is usually understood as the paper on the Cousin-I problem on polynomial polyhedra and the polynomial approximation in \mathbb{C}^n because the original proof contains the argument valid only to polynomial polyhedra, which is noted in the errata in Oka [20, p. 521] (see also the footnote *) at the bottom of Oka [21, p. 4]).
References

Makoto Abe
Faculty of Life Sciences
Kumamoto University
Kumamoto 862-0976, JAPAN
e-mail: mabe@kumamoto-u.ac.jp

(Received April 20, 2009)