Title
A construction for modified generalized Hadamard matrices using QGH matrices

Author(s)
Hiramine, Yutaka

Citation
Designs, Codes and Cryptography, 62(3): 279-288

Issue date
2012-03

Type
Journal Article

URL
http://hdl.handle.net/2298/33184
A construction for modified generalized Hadamard matrices using QGH matrices

Yutaka Hiramine
Department of Mathematics, Faculty of Education, Kumamoto University,
Kurokami, Kumamoto, Japan
hiramine@gpo.kumamoto-u.ac.jp

Abstract. Let G be a group of order mu and U a normal subgroup of G of order u. Let $G/U = \{U_1, U_2, \cdots, U_m\}$ be the set of cosets of U in G. We say a matrix $H = [h_{ij}]$ order k with entries from G is a quasi-generalized Hadamard matrix with respect to the cosets G/U if

$$\sum_{1 \leq t \leq k} h_{it}h^{-1}_{jt} = \lambda h_{ij} U_1 + \cdots + \lambda h_{im} U_m \quad (\exists \lambda_{ij1}, \cdots, \exists \lambda_{ijm} \in \mathbb{Z})$$

for any $i \neq j$. On the other hand, in our previous article we defined a modified generalized Hadamard matrix $\text{GH}(s, u, \lambda)$ over a group G, from which a $\text{TD}_\lambda(u\lambda, u)$ admitting G as a semiregular automorphism group is obtained. In this article, we present a method for combining quasi-generalized Hadamard matrices and semiregular relative difference sets to produce modified generalized Hadamard matrices.

Keywords: transversal design, generalized Hadamard matrix, semiregular relative difference set

1 Introduction

A transversal design $\text{TD}_\lambda(k, u) \; (u > 1, k = u\lambda)$ is an incidence structure $(\mathcal{P}, \mathcal{B})$, where

(i) \mathcal{P} is a set of uk points partitioned into k classes (called point classes), each of size u,

(ii) \mathcal{B} is a collection of k-subsets of \mathcal{P} (called blocks),

(iii) Any two distinct points in the same point class are incident with no block and any two points in distinct point classes are incident with exactly λ blocks.

A transversal design $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ is called symmetric (and often denoted by $\text{STD}_\lambda(k, u)$) if the dual structure \mathcal{D}^* of \mathcal{D} is also a transversal design with the same parameters as \mathcal{D}. If \mathcal{D} is symmetric, the point classes of \mathcal{D}^* are said to be the block classes of \mathcal{D}. A transversal design \mathcal{D} is called class regular with respect to U if U is an automorphism group of \mathcal{D} acting regularly on each point class.
Throughout the article all groups are assumed to be finite. Let G be a group. A subset S of G is identified with a group ring element $\sum_{x \in S} x \in \mathbb{Z}[G]$ and $S^{(-1)}$ denotes the set of inverses of the elements of S. A matrix $M = [g_{ij}]$ of order $k(=u\lambda)$ with entries from G is called a generalized Hadamard matrix over G if it satisfies $\sum_{1 \leq t \leq k} g_{it}g_{it}^{-1} = \lambda G$ for any $i \neq \ell$, where $\lambda = k/|G|$. From a generalized Hadamard matrix we obtain a symmetric transversal design admitting G as a class regular automorphism group ([3]). On the other hand a modified generalized Hadamard matrix $GH(s, u, \lambda)$ over a group is defined in [6] and from this one can construct a transversal design $TD_{\lambda}(u\lambda, u)$ admitting G as a automorphism group (see Result 2.2).

Let G be a group of order mu and U a normal subgroup of G of order u. Let $S = \{U_1, \ldots, U_m\}$ be the set of cosets of U in G. We say that a matrix $M = [d_{ij}]$ of order k with entries from G is a quasi-generalized Hadamard matrix with respect to S if $\sum_{1 \leq j \leq t} d_{ij}d_{ij}^{-1} = \sum_{1 \leq s \leq m} \lambda_{is}sU_s(\lambda_{is} \in \mathbb{Z})$ for any $i \neq \ell$. In this article, we present a method for combining such matrices and semiregular relative difference sets to produce modified generalized Hadamard matrices (Theorem 4.1, Theorem 4.9).

2 Preliminaries

In [6] we introduced the notion of a modified generalized Hadamard matrix over a group. We first give a summary of the related results, which we will use in the later sections.

Definition 2.1. ([6]) Let G be a group of order su, where s is a divisor of $u\lambda$, and u and λ are positive integers. For subsets D_{ij} $(1 \leq i, j \leq t, t = u\lambda/s)$ of G, we call a matrix

$$[D_{ij}] = \begin{bmatrix}
D_{11} & D_{12} & \cdots & D_{1t} \\
D_{21} & D_{22} & \cdots & D_{2t} \\
\vdots & \vdots & \ddots & \vdots \\
D_{t1} & D_{t2} & \cdots & D_{tt}
\end{bmatrix}$$

a modified generalized Hadamard matrix with respect to subgroups U_i $(1 \leq i \leq t)$ of G of order u if the following conditions are satisfied:

$|D_{ij}| = s$ for all i, j, $1 \leq i, j \leq t$, and

$$\sum_{1 \leq j \leq t} D_{ij}D_{ij}^{(-1)} = \begin{cases}
u\lambda + \lambda(G - U_i) & \text{if } i = \ell, \\
\lambda G & \text{otherwise.}
\end{cases} \quad (1)$$

For short, we say $[D_{ij}]$ is a $GH(s, u, \lambda)$ matrix with respect to U_i, $1 \leq i \leq t$. If $U_1 = \cdots = U_t = U$ for a subgroup U of G, we simply say that $[D_{ij}]$ is a $GH(s, u, \lambda)$ matrix with respect to U. In this case, if U is normal in G, then a $GH(u, \lambda)$ matrix over U is obtained from the $GH(s, u, \lambda)$ matrix (see Proposition 6.3 of [6]).
We denote by $M_t(\mathbb{Z}[G])$ the set of matrices of order t over the group ring $\mathbb{Z}[G]$. An incidence structure $(\mathcal{P}, \mathcal{B})$ is obtained from a GH(s, u, λ) matrix $[D_{ij}] \in M_t(\mathbb{Z}[G])$ in the following way:

$$\mathcal{P} = \{1, 2, \cdots, t\} \times G, \quad \mathcal{B} = \{B_{jh} : 1 \leq j \leq t, \ h \in G\},$$

where $B_{jh} = \bigcup_{1 \leq i \leq t} (i, D_{ij} h) \ (= \bigcup_{1 \leq i \leq t} \{(i, dh) : 1 \leq i \leq t, \ d \in D_{ij}\})$.

Moreover, the action of G on $(\mathcal{P}, \mathcal{B})$ is defined by $(i, c)x = (i, cx)$, $(B_{jh})x = B_{jhx}$.

Then, by [6] we have

Result 2.2. ([6]) Let $[D_{ij}] \in M_t(\mathbb{Z}[G])$ be a GH(s, u, λ) matrix over a group G of order su with respect to subgroups U_i $(1 \leq i \leq t)$, where $t = u\lambda/s$. If we define \mathcal{P} and \mathcal{B} by (2), then the following holds.

(i) $(\mathcal{P}, \mathcal{B})$ is a transversal design $TD_{\lambda}(k, u)$, where $k = u\lambda$.

(ii) G is an automorphism group of $(\mathcal{P}, \mathcal{B})$ acting semiregularly both on \mathcal{P} and \mathcal{B}.

(iii) For any $i (1 \leq i \leq t)$ and $x \in G$, $P_i U_i x$ is a point class of $(\mathcal{P}, \mathcal{B})$, on which $x^{-1}U_i x$ acts regularly.

Using Result 2.2 we can obtain transversal designs by constructing modified generalized Hadamard matrices. Transversal designs obtained from GH(s, u, λ) matrices are not always symmetric (see Example 5.3 of [6]) and do not always admit class regular automorphism groups even if they are symmetric (see [7]).

The following gives a criterion for the resulting transversal design to be symmetric.

Result 2.3. (Theorem 3.10 and Corollary 3.11 of [6]) Let $[D_{ij}] \in M_t(\mathbb{Z}[G])$ be a GH(s, u, λ) matrix over a group G with respect to subgroups U_i $(1 \leq i \leq t)$, where $t = u\lambda/s$. Then the transversal design $TD_{\lambda}(k, u)$, $k = u\lambda$, corresponding to $[D_{ij}]$ is symmetric if and only if the matrix

$$[D_{ij}^{(-1)}]^T = \begin{bmatrix}
D_{11}^{(-1)} & D_{21}^{(-1)} & \cdots & D_{1t}^{(-1)} \\
D_{12}^{(-1)} & D_{22}^{(-1)} & \cdots & D_{2t}^{(-1)} \\
\vdots & \cdots & \vdots & \vdots \\
D_{1t}^{(-1)} & D_{2t}^{(-1)} & \cdots & D_{tt}^{(-1)}
\end{bmatrix}$$

is a GH(s, u, λ) matrix over G with respect to suitable subgroups V_i of G, $1 \leq i \leq t$, of order u. In particular, if $G \triangleright U_1 = \cdots = U_t$, then $[D_{ij}^{(-1)}]^T$ is also a GH(s, u, λ) matrix over G.

Let G be a group of order $u^2\lambda$ and U a subgroup of G of order u. A $u\lambda$-subset D of G is called a $(u\lambda, u, u\lambda, \lambda)$-difference set relative to U if the list of quotients

3
with distinct elements \(d_1, d_2 \in D \) contains each element of \(G - U \) exactly \(\lambda \) times and no elements of \(U \):

\[
DD^{(-1)} = u\lambda + \lambda(G - U)
\]

We note that if \(D \) is a \((u\lambda, u, u\lambda, \lambda)\)-difference set relative to \(U \), then \([D]\) is a \(GH(u\lambda, u, \lambda)\) matrix of order 1 and the corresponding transversal design is not always symmetric (see Proposition 4.4 of [5]). A \((u\lambda, u, u\lambda, \lambda)\)-difference set is often called a semiregular relative difference set.

For an abelian group \(G \), we denote by \(G^* \) the set of (linear) characters of \(G \). Let \(\chi_0 \) be the principal character of \(G \). The following is a well known result on \(G^* \).

Result 2.4. ([12]) Let \(G \) be an abelian group and let \(z \in \mathbb{Z}[G] \). If \(\chi(z) = 0 \) for any character \(\chi \in G^* \), \(\chi \neq \chi_0 \), then \(z = cG \) for an integer \(c \).

The following is a slight modification of Result 2.4.

Lemma 2.5. Let \(U \) be a subgroup of an abelian group \(G \) and let \(z \in \mathbb{Z}[G] \). If \(\chi(z) = 0 \) for every character \(\chi \in G^* \) such that \(\chi|_U \neq \chi_0 \), then \(z = Uf \) for some \(f \in \mathbb{Z}[G] \).

Proof. It suffices to show that \(zg = z \) for every \(g \in U \). On the other hand, for any \(\chi \in G^* \) we have \(\chi(g - 1) = 0 \) or \(\chi(z) = 0 \) according as \(\chi|_U = \chi_0 \) or \(\chi|_U \neq \chi_0 \). Hence \(\chi(z(g - 1)) = 0 \). By Result 2.4 the lemma holds. (\(\blacksquare \))

3 Quasi-Generalized Hadamard Matrices with respect to cosets

In this section we give a modification of generalized Hadamard matrices from a different point of view to construct \(GH(s, u, \lambda)\) matrices that we have given in Definition 2.1.

Definition 3.1. Let \(N \) be a group of order \(mu \) and \(U \) a normal subgroup of \(N \) of order \(u \). Let \(N/U = \{U_1(=U), U_2, \ldots, U_m\} \) be the set of cosets of \(U \) in \(N \). We say a matrix \(H = [h_{ij}] \) of order \(k(=u\lambda) \) with entries from \(N \) is a quasi-generalized Hadamard matrix with respect to the cosets \(N/U \) (a QGH\((u, \lambda)\) matrix with respect to \(N/U \) for brevity) if there exist integers \(\lambda_{ijt} \geq 0 \) such that

\[
\sum_{1 \leq t \leq k} h_{it}h_{jt}^{-1} = \lambda_{i1}U_1 + \cdots + \lambda_{im}U_m,
\]

for any \(i, j (1 \leq i \neq j \leq k) \).

We note that the condition (4) is equivalent to the following:

\[
H(H^{(-1)})^T = \begin{bmatrix}
 k & U_{z12} & \cdots & U_{z1k} \\
 U_{z21} & k & \cdots & U_{z2k} \\
 \vdots & \ddots & \ddots & \vdots \\
 U_{zk1} & U_{zk2} & \cdots & k
\end{bmatrix}
\]
where $z_{ij} \in \mathbb{Z}[N]$ ($i \neq j$) and each coefficient of z_{ij} is a non-negative integer and satisfies $\chi_0(z_{ij}) = \lambda$ for the principal character χ_0 of N.

Remark 3.2.

(i) An ordinary GH(u, λ) matrix over U is a QGH(u, λ) matrix with respect to U/U.

(ii) If $H = [h_{ij}]$ is a generalized Hadamard matrix over a group U, then H is also a quasi-generalized Hadamard matrix with respect to the cosets U/V for any normal subgroup V of U. Hence, there always exists a QGH(p^s, p^m) matrix of order p^{s+m} over $(\mathbb{Z}_p)^s$ with respect to the cosets $(\mathbb{Z}_p)^s/(\mathbb{Z}_p)^t$ for any non-negative integers m, s and $t(\leq s)$ (see Table 5.10 of [2]).

(iii) Let U be a normal subgroup of a group G and N a subgroup of G such that $N \geq U$. If H is a QGH(u, λ) matrix with respect to N/U, then H can be regarded as a QGH(u, λ) matrix with respect to G/U.

(iv) Since $u\lambda = (\lambda_{ij1} + \cdots + \lambda_{ijm})|U|$ by (4), we have

$$\lambda = \lambda_{ij1} + \cdots + \lambda_{ijm}$$

for any i, j ($i \neq j$).

We give some examples of quasi-generalized Hadamard matrices with respect to cosets.

Let p^n be any prime power and r a positive integer. We denote by GR(p^n, r) the Galois ring over \mathbb{Z}_{p^n} (see [10]).

Proposition 3.3. Let $R = GR(p^n, r)$ be the Galois ring over \mathbb{Z}_{p^n}. We define a matrix $M = [m_{ij}]$ of degree p^n over the additive group $(R, +)$ by $m_{ij} = ij$ for $i, j \in R$. Then M is a QGH($p^n, p^{(n-1)r}$) matrix with respect to the cosets R/I, where $I = (p^{n-1})$ is the smallest non-zero ideal of R.

Proof. As $\bigcup_{j \in R}(m_{ij} - m_{ij}) = (i - \ell)\bigcup_{j \in R} j$. Assume $i \neq \ell$. Then, as a mapping $f(j) = (i - \ell)j$ from R to the ideal $(i - \ell)R$ of R is an epimorphism, $(i - \ell)\bigcup_{j \in R} j = dJ$, where d is the order of the kernel of f and $J = (i - \ell)R$.

We note that any nonzero ideal of R is of the form $(p^s)(p^{n-1})$ for some $s (0 \leq s \leq n-1)$ (see [10] p.308). Set $J = (p^s)$ and $I = (p^{n-1})$. Then $\bigcup_{j \in R}(m_{ij} - m_{ij}) = dU_1 \cup dU_2 \cup \cdots \cup dU_t$, where $J/I = \{U_1(= I), U_2, \cdots, U_t\}$ and $t = p^{n-s-1}$. Thus the proposition holds.

Example 3.4. (i) In Proposition 3.3, set $n = 2$ and $r = 1$. Then $R = \mathbb{Z}_{p^2}$. Hence there exists a QGH(p, p) matrix over $\langle a \rangle \simeq \mathbb{Z}_{p^2}$ with respect to the cosets $\langle a \rangle / \langle a^p \rangle$ for any prime p.

(ii) Set $N = \langle a, b \rangle \simeq \mathbb{Z}_3 \times \mathbb{Z}_3$, $U = \langle b \rangle \simeq \mathbb{Z}_3$. Then $[\ell_{ij}]$ below is a QGH($3, 3$) matrix with respect to N/U.

5
We can verify that \[\sum_{1 \leq t \leq 9} \ell_it\ell_j^{-1} \in \{3U, 2U + Ua, 2U + Ua^2\} \quad (i \neq j). \]

Example 3.5. Let \(N = \langle a \rangle \simeq \mathbb{Z}_6 \) and \(U = \langle a^2 \rangle \simeq \mathbb{Z}_3 \). Then the following matrix \([h_{ij}]\) of degree 12 is a QGH(3, 4) matrix with respect to \(N/U \). We note that \[\sum_{1 \leq t \leq 12} h_{it}h_j^{-1} \in \{4U, 3U + Ua, 2U + 2Ua\} \quad (i \neq j). \]

\[
[h_{ij}] = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & a & a^2 & a^4 & a^5 & 1 & a^2 & a^3 & a^4 & a^6 & a^7 \\
1 & 1 & a^4 & a^2 & 1 & a^2 & a^4 & 1 & a^4 & a^2 & a^6 & a^4 \\
1 & 1 & a^2 & a^4 & 1 & a^2 & a^4 & a^2 & 1 & a^2 & a^4 & a^2 \\
1 & a^4 & a & a^2 & a^3 & a & a^2 & a^3 & a^5 & a^5 & a^4 & a^4 \\
1 & a^4 & a^3 & a^4 & a^2 & a^5 & 1 & a & a^5 & a^3 & a^2 & a^4 \\
1 & a^4 & a^3 & a^2 & a & a^5 & a^4 & a^3 & a & a^5 & 1 & a^4 \\
1 & a^4 & a^5 & a^4 & 1 & a^4 & a^3 & a^2 & a^2 & a & 1 & a^4 \\
1 & a^2 & a^5 & a^2 & 1 & a^3 & 1 & a^4 & a^4 & a & a^4 & a^4 \\
1 & a^2 & a^3 & 1 & a^4 & a^5 & a^2 & a^4 & 1 & a^2 & 1 & a^2 \\
1 & a^2 & a^4 & 1 & a^3 & 1 & a^2 & a^5 & 1 & a^2 & a^4 & a^3 \\
1 & a^2 & a^5 & 1 & a^4 & a^2 & a & a^4 & a^4 & a^2 & a^4 & a^3 & a^1 & 1 \\
\end{bmatrix}
\]

By the definition of the Kronecker product the following holds.

Proposition 3.6. Let \(N \) be a group and \(U \) a normal subgroup of \(N \). If \(H_i(i = 1, 2) \) is a QGH\((u, \lambda_i)\) matrix with respect to \(N/U \) for \(i \in \{1, 2\} \), then \(H_1 \otimes H_2 \) is a QGH\((u, \lambda_1\lambda_2u)\) matrix with respect to \(N/U \).

We note that when \(N = U \) the assertion of the proposition coincides with that of Theorem 5.11 in [2].

4 Semiregular relative difference sets and QGH\((u, \lambda)\) matrices with respect to cosets

In this section we present a construction method for transversal designs by combining quasi-generalized Hadamard matrices with respect to cosets and semiregular relative difference sets.
Theorem 4.1. Let G be a group of order $u^2 \mu$ and let U and N be subgroups of G such that $N_G(U) \geq N \geq U$ and $|U| = u$. Let $H = [h_{ij}]$ be a QGH(u, λ) matrix with respect to N/U and let $D = (D_1, D_2, \cdots, D_k)$ ($k = u\lambda$) be a k-tuple of $(u\mu, u, u\mu, \mu)$-difference sets in G relative to U. Then the following is a GH($u^2 \mu, u, u\lambda\mu$) matrix of order k with respect to U and the resulting $TD_{u\mu\lambda}(u^2 \mu, u)$ admits G as a semiregular automorphism group.

$$M_{H,D} = \begin{bmatrix} h_{11}D_1 & h_{12}D_2 & \cdots & h_{1k}D_k \\ h_{21}D_1 & h_{22}D_2 & \cdots & h_{2k}D_k \\ \vdots & \vdots & \ddots & \vdots \\ h_{k1}D_1 & h_{k2}D_2 & \cdots & h_{kk}D_k \end{bmatrix} \quad (5)$$

Proof. Set $N/U = \{U_1(= U), U_2, \cdots, U_m\}$, where $m = [N : U]$. By assumption, for any i, j ($1 \leq i \neq j \leq k$) there exist $\lambda_{ij} \geq 0$ ($1 \leq s \leq m$) satisfying

$$\sum_{1 \leq t \leq k} h_{it}h_{jt}^{-1} = \lambda_{ij1}U_1 + \lambda_{ij2}U_2 + \cdots + \lambda_{ijm}U_m \quad (6)$$

and

$$\lambda = \lambda_{ij1} + \cdots + \lambda_{ijm} \quad (7)$$

by Remark 3.2(iv). Moreover, by assumption,

$$D_tD_t^{(-1)} = u\mu + \mu(G - U) \quad (1 \leq t \leq k) \quad (8)$$

Set $M_{H,D} = [D_{ij}]$, where $D_{ij} = h_{ij}D_j$.

Assume $i \neq j$. Then we have

$$\sum_{1 \leq t \leq k} D_{it}D_{jt}^{(-1)} = \sum_{1 \leq t \leq k} h_{it}(u\mu + \mu(G - U))h_{jt}^{-1} \quad (by \ (8))$$

$$= \sum_{1 \leq t \leq k} h_{it}h_{jt}^{-1}(u\mu + \mu(G - U)) \quad (as \ N \triangleright U)$$

$$= \sum_{1 \leq s \leq m} \lambda_{ij}U_s(u\mu + \mu(G - U)) \quad (by \ (6))$$

$$= u\mu \sum_{1 \leq s \leq m} \lambda_{ij}U_s + \mu(\sum_{1 \leq s \leq m} \lambda_{ij}|U_s|)G$$

$$- \mu \sum_{1 \leq s \leq m} \lambda_{ij}|U_s|U_s$$

$$= \mu(\sum_{1 \leq s \leq m} \lambda_{ij}U_s)G = \mu uG \quad (by \ (7))$$

Assume $i = j$. Then, similarly we have

$$\sum_{1 \leq t \leq k} D_{it}D_{it}^{(-1)} = \sum_{1 \leq t \leq k} h_{it}(u\mu + \mu(G - U))h_{it}^{-1}$$

$$= ku\mu + k\mu(G - U)$$

7
It follows that
\[
\sum_{1 \leq i \leq k} D_{ii}D_{ji}(-1) = \begin{cases}
 k\mu u + k\mu(G-U) & \text{if } i = j, \\
 k\mu G & \text{otherwise}.
\end{cases}
\]

Therefore the theorem holds. \(\square\)

Remark 4.2. (i) In Theorem 4.1, if there exists a \((\mu, u, u\mu, \mu)\)-difference set \(D\) in \(G\) relative to \(U\), then we may choose a \(k\)-tuple \(D = (D_g1, D_g2, \cdots, D_gk)\), where \(g_1, \cdots, g_k \in G\).

(ii) We note that \(U\) is not always a normal subgroup of \(G\) in Theorem 4.1 and so the transversal design corresponding to \(D\) might not admit a class regular automorphism group.

Corollary 4.3. Let \(G\) be a group of order \(u^2\mu\) and \(U\) a normal subgroup of \(G\) of order \(u\). Let \(H = [h_{ij}]\) be a QGH\((u, \lambda)\) matrix with respect to \(G/U\) and \(D = (D_1, D_2, \cdots, D_k) (k = u\lambda)\) an \(n\)-tuple of \((\mu, u, u\mu, \mu)\)-difference sets in \(G\) relative to \(U\). Then the matrix of order \(k\) defined by \((5)\) is a GH\((\mu u, u, u\lambda)\) matrix with respect to \(U\) and gives an STD\(_{\mu u, \lambda}(u^2\mu, u)\).

Proof. The corollary immediately follows from Result 2.3 and Theorem 4.1. \(\square\)

Lemma 4.4. Assume the existence of a \((p\mu, p, p\mu, \mu)\)-difference set in a group \(G\) relative to a subgroup \(U \simeq \mathbb{Z}_p\) of \(G\) for a prime \(p\). If \(p^2 \mid |C_G(U)|\), then there exists a TD\(_{2\mu, p}(p^2\mu, p)\) admitting \(G\) as a semiregular automorphism group.

Proof. By assumption, there exists a subgroup \(N\) of \(G\) such that \(U \leq N \simeq \mathbb{Z}_{p^2}\) or \(\mathbb{Z}_p \times \mathbb{Z}_p\). Let \(D = (D_1, \cdots, D_{p^2})\) be a \(p^2\)-tuple of \((\mu, u, u\mu, \mu)\)-difference sets in \(G\) relative to \(U\). It follows from Example 3.4(i) or Remark 3.2(ii) that there is a QGH\((p, p)\) matrix with respect to \(N/U\), say \(H\). Applying Theorem 4.1, \(M_{H,D}\) is a GH\((p\mu, p, p^2\mu)\) matrix with respect to \(U\) and we obtain a TD\(_{2\mu, p}(p^2\mu, p)\) from \(M_{H,D}\), which admits \(G\) as a semiregular automorphism group. Thus the lemma holds. \(\square\)

Example 4.5. (i) Set \(G = \langle a, b, c \mid a^7 = b^3 = c^3 = 1, ac = ca, bc = cb, b^{-1}ab = a^2 \rangle\) and let \(D\) be a \((21, 3, 21, 7)\)-difference set relative to \(U = \langle c \rangle \simeq \mathbb{Z}_7\) \(([1])\). By Lemma 4.4, there exists a TD\(_{2\mu, 7}(3^7\mu, 3)\) admitting \(G \simeq (\mathbb{Z}_7 \times \mathbb{Z}_3) \times \mathbb{Z}_3\) as a semiregular automorphism group.

(ii) Set \(G = \langle r, s \rangle \simeq \text{Sym}(3) \times \mathbb{Z}_6\), where \(r^2 = s^3 = r^6 = 1, [r, s] = [s, r] = 1\) and \(rsr = s^{-1}\) and let \(D\) be a \((12, 3, 12, 4)\)-difference set in \(G\) relative to a non-normal subgroup \(U = \langle s^2 \rangle\) \(([5])\). By Lemma 4.4, there exists a TD\(_{108, 3}(108\mu, 3)\) admitting \(G \simeq \text{Sym}(3) \times \mathbb{Z}_6\) as a semiregular automorphism group.

Example 4.6. Assume that there exists a \((3\mu, 3\mu, \mu)\)-difference set in a group \(G\) relative to a subgroup \(U \simeq \mathbb{Z}_3\) of \(G\) and that \(2 \mid |C_G(U)|\). Let \(D = (D_1, \cdots, D_{12})\) be a \(12\)-tuple of \((3\mu, 3\mu, \mu)\)-difference sets in \(G\) relative to \(U\). By assumption, there exists a subgroup \(N\) of \(G\) such that \(U \leq N \simeq \mathbb{Z}_6\). It follows from Example 3.5 that there is a QGH\((3, 4)\) matrix with respect to \(N/U\),
Lemma 4.7. Let G be an abelian group of order $u^2\mu$ and let $D = (D_1, \cdots, D_k)$ be a k-tuple of $(u\mu, u, u\mu, \mu)$-difference sets in G relative to a subgroup U of G of order u, where $k = u\lambda$ for some $\lambda \in \mathbb{Z}$. Let $h_{ij}(1 \leq i, j \leq k)$ be elements of G. Then a matrix $M = [h_{ij}D_j]$ of order k is a $\text{GH}(u\mu, u, u\lambda u)$ matrix with respect to U if and only if $H = [h_{ij}]$ is a $\text{QGH}(u, \lambda)$ matrix with respect to G/U. If this is the case, the resulting TD $u\lambda u(u^2\mu, u)$ is symmetric.

Proof. By definition, M is a $\text{GH}(u\mu, u, u\lambda u)$ matrix if and only if

$$
\sum_{1 \leq j \leq k} h_{ij}D_j(h_{ij}D_j)^{(-1)} = \begin{cases} k\mu + k\mu(G - U) & \text{if } j = \ell, \\ \mu k G & \text{otherwise}. \end{cases}
$$

(9)

Since G is abelian, $\sum_{1 \leq j \leq k} h_{ij}D_j(h_{ij}D_j)^{(-1)} = \sum_{1 \leq j \leq k} h_{ij}h_{ij}^{-1}D_jD_j^{(-1)} = (u\mu + \mu(G - U))\sum_{1 \leq j \leq k} h_{ij}h_{ij}^{-1}$. Hence, by Result 2.4, (9) is equivalent to

$$
\chi(u\mu - \mu\chi(U))\chi\left(\sum_{1 \leq j \leq k} h_{ij}h_{ij}^{-1}\right) = 0 \quad (i \neq \ell)
$$

(10)

for any character $\chi(\neq \chi_0)$ of G. Clearly (10) is equivalent to $\chi\left(\sum_{1 \leq j \leq k} h_{ij}h_{ij}^{-1}\right) = 0$ for any character χ of G such that $\chi|_U \neq \chi_0$. Applying Lemma 2.5, this is equivalent to the condition that H is a $\text{QGH}(u, \lambda)$ matrix with respect to the cosets G/U. If this is the case, the resulting TD $u\lambda u(u^2\mu, u)$ is symmetric by Result 2.3. Therefore the proposition holds. \qed

Example 4.8. Set $G = \langle a \rangle \times \langle b \rangle \simeq \mathbb{Z}_9 \times \mathbb{Z}_3, N = \langle a \rangle \simeq \mathbb{Z}_9$ and $U = \langle a^3 \rangle \simeq \mathbb{Z}_3$. Let $H = [h_{ij}]$ be a $\text{QGH}(3, 3)$ matrix with respect to N/U in Example 3.4(i). As G contains $(9, 3, 9, 3)$-difference sets relative to U (see [9]), we can choose a 9-tuple $D = (D_1, \cdots, D_9)$ of $(9, 3, 9, 3)$-difference sets in G relative to U. Then, by Theorem 4.1, $M_{H,D}$ is a $\text{GH}(9, 3, 27)$ matrix with respect to U. Moreover, by Lemma 4.7, the TD $D_{27}(81, 3)$ obtained from $M_{H,D}$ is symmetric.

When D is a $(u\mu, u, u\mu, \mu)$-difference set in G relative to U, D is a complete set of right coset representatives of U in G by (3), but $D^{(-1)}$ is not so in general. If some $(u\mu, u, u\mu, \mu)$-difference set in G satisfies this condition, then we have the following.

Theorem 4.9. Let G be a group of order $u^2\mu$ and let U and N be subgroups of G such that $|N| = mu, |U| = u$ and $N_G(U) \geq N \geq U$ and $|U| = u$. Let $H = [h_{ij}]$ $(h_{ij} \in N)$ be a $\text{QGH}(u, \lambda)$ matrix with respect to N/U and let $D = (D_1, D_2, \cdots, D_k)$ $(k = u\lambda)$ be a k-tuple of $(u\mu, u, u\mu, \mu)$-difference sets in G. Assume at least $k - 1$ of D_i’s are complete sets of right and left coset
representatives of \(U \) in \(G \). Then the following matrix \(M'_{H,D} \) of order \(k \) is a GH\((u\mu, u, u\mu)\) matrix with respect to \(U \) and the resulting TD\(_{u\mu\lambda}(u^2\mu\lambda, u)\) admits \(G \) as a semiregular automorphism group.

\[
M'_{H,D} = \begin{bmatrix}
D_1h_{11} & D_1h_{12} & \cdots & D_1h_{1k} \\
D_2h_{21} & D_2h_{22} & \cdots & D_2h_{2k} \\
\vdots & \vdots & \ddots & \vdots \\
D_kh_{k1} & D_kh_{k2} & \cdots & D_kh_{kk}
\end{bmatrix}
\]

(11)

Proof. Set \(N/U = Ug_1 \cup \cdots \cup Ug_m \) \((g_1, \ldots, g_m \in N)\), where \(m = [N : U] \). By assumption,

\[
\sum_{1 \leq t \leq k} h_{it}h_{jt}^{-1} = \lambda_{ij1}Ug_1 + \cdots + \lambda_{ijm}Ug_m
\]

(12)

for some non-negative integers \(\lambda_{ij}s \) \((1 \leq i \neq j, 1 \leq s \leq m)\).

Set \(M'_{H,D} = [D_{ij}] \), where \(D_{ij} = D_i h_{ij} \). Then

\[
\sum_{1 \leq t \leq k} D_{it}D_{jt}^{(-1)} = \sum_{1 \leq t \leq k} D_i h_{it}h_{jt}^{-1} D_j^{(-1)}
\]

\[
= D_i \left(\sum_{1 \leq t \leq k} h_{it}h_{jt}^{-1} \right) D_j^{(-1)}
\]

Hence, by (12)

\[
\sum_{1 \leq t \leq k} D_{it}D_{jt}^{(-1)} = \begin{cases}
ku\mu + k\mu(G - U) & \text{if } i = j, \\
D_i(\lambda_{ij1}Ug_1 + \cdots + \lambda_{ijm}Ug_m)D_j^{(-1)} & \text{otherwise}.
\end{cases}
\]

Assume \(i \neq j \). By assumption, either \(D_i \) or \(D_j \) is a complete set of right and left coset representatives of \(U \) in \(G \) as \(i \neq j \). Hence we have either \(D_iU = G \) or \(UD_j^{(-1)} = G \). In either case, \(\sum_{1 \leq t \leq k} D_{it}D_{jt}^{(-1)} = \lambda u\mu G \) as \(N \triangleright U \). Thus

\[
\sum_{1 \leq t \leq k} D_{it}D_{jt}^{(-1)} = \begin{cases}
ku\mu + k\mu(G - U) & \text{if } i = j, \\
k\mu G & \text{otherwise}.
\end{cases}
\]

Therefore the theorem holds. \(\square \)

Corollary 4.10. Let \(G \) be a group of order \(u^2\mu \) and \(U \) a normal subgroup of \(G \) of order \(u \). Let \(H = [h_{ij}] \) be a QGH\((u, \lambda)\) matrix with respect to \(G/U \) and \(D = (D_1, D_2, \ldots, D_k) \) \((k = u\lambda)\) a \(k \)-tuple of \((u\mu, u, u\mu)\)-difference sets in \(G \) relative to \(U \). Then the matrix of order \(k \) defined by (11) is a GH\((u\mu, u, u\lambda\mu)\) matrix with respect to \(U \) and the resulting TD\(_{u\mu\lambda}(u^2\mu\lambda, u)\) admits \(G \) as a semiregular automorphism group.
Example 4.11. Many \((4n^2, 2n^2 - n, n^2 - n)\)-difference sets have been constructed in abelian groups of order \(4n^2\) and they are called Menon Hadamard difference sets ([8]). Let \(L\) be an abelian group of order \(4n^2\) containing a Menon Hadamard difference set \(A\). Assume that \(L\) is not an elementary abelian 2-group. We define a group \(G = L \langle t \rangle\) of order \(8n^2\), where an element \(t\) of \(G\) inverts \(L\). By a similar way as in Proposition 4.14 of [4], we can verify that \(D = A + (L - A^{(-1)})t\) is a \((4n^2, 2, 4n^2, 2n^2)\)-difference set in \(G\) relative to \(U = \langle t \rangle\). We choose \(A\) so that it satisfies \(A = A^{(-1)}\) (see Problem 2 in Chapter 4 of [8]). For \(g \in L\), \(Dg\) is a \((4n^2, 2, 4n^2, 2n^2)\)-difference set in \(G\) relative to \(U\). However, as \((Dg)^{(-1)}(Dg) = 4n^2 + 2n^2(G - \langle gt \rangle)\), \(Dg\) is not a complete set of left coset representatives of \(U\) in \(G\). Clearly \(C_G(t)\) contains a subgroup \(N\) of the form \(N = \langle t \rangle \times \langle s \rangle\) isomorphic to \(Z_2 \times Z_2\). Let \(H = [h_{ij}]\) be the following \(QGH(2, 2)\) matrix with respect to \(N/U\):

\[
H = \begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & t & s & st \\
1 & 1 & t & t \\
1 & t & st & s
\end{bmatrix}
\]

Set \(D = (D, D, D, Dg)\). Then, applying Theorem 4.9, \(M'_{H, D}\) is a \(GH(4n^2, 2, 8n^2)\) matrix with respect to \(U\) and the resulting \(TD_{8n^2}(16n^2, 2)\) admits \(G\) as a semiregular automorphism group.

Acknowledgment

The author would like to thank the referees for valuable suggestions and comments. The author also thanks one of the referees who showed him a shorter proof of Lemma 2.5.

References

