<table>
<thead>
<tr>
<th>Title</th>
<th>Ozone Generation in Dry Air Using Pulsed Discharges With and Without a Solid Dielectric Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Samaranayake, W.J.M.; Miyahara, Y.; Namihira, T.; Katsuki, S.; Hackam, R.; Akiyama, H.</td>
</tr>
<tr>
<td>Citation</td>
<td>IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 8(4): 687-697</td>
</tr>
<tr>
<td>Issue date</td>
<td>2001-08</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2298/3487</td>
</tr>
</tbody>
</table>

©2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes requires permission from IEEE.
Ozone Generation in Dry Air Using Pulsed Discharges With and Without a Solid Dielectric Layer

W. J. M. Samaranayake, Y. Miyahara, T. Namihira, S. Katsuki, R. Hackam and H. Akiyama
Department of Electrical and Computer Engineering
Kumamoto University
Kumamoto, Japan

ABSTRACT
Energy efficient generation of ozone is very important because ozone is being used increasingly in a wide range of industrial applications. Ozonizers usually use dielectric barrier discharges and employ alternating current (ac) with consequent heat generation, which necessitates cooling. In the present study, very short duration pulsed voltage is employed resulting in reduced heating of the gas and discharge reactor. A comparison of ozone generation in dry air using a coaxial concentric electrode system with and without a solid dielectric layer is reported. Two types of dielectric layers were employed, ceramic and polyvinylchloride (PVC). The effects of peak pulsed voltage (12.5 to 62 kV), reactor length (0.1 to 1 m), pulse repetition rate (25 to 400 pulses per second, pps), gas flow rate (1.5 to 3.0 l/min) and variation of the pitch length of the spiral wire forming the central electrode (5 to 10 mm) on the concentration and production yield of ozone (g/kWh) are reported. A comparison is made between the performance of discharge reactors with (ceramic reactor Type IIC and PVC reactor Type IIP) and without (reactor Type I) a dielectric layer, using the same electrode gap separation (15 mm) and reactor lengths (0.157 and 1 m). High production yields of ozone in dry air of ~ 122, 52 and 60 g/kWh were obtained when using, respectively ceramic, PVC, and no dielectric layer, for a fixed pulse rate of 100 pps, 1.5 l/min flow rate and for a relatively short length of the reactor of 157 mm.

1 INTRODUCTION

The generation of ozone using a solid dielectric barrier placed adjacent to the cathode in a concentric coaxial electrode system is an important application of non-thermal discharges for gaseous plasma synthesis. The generation of ozone using air instead of oxygen is advantageous due to the readily available air, which obviates the requirement of cryogenic systems for producing oxygen. Ozone has numerous applications as a potent germicide and viricide, as well as a strong bleaching agent, and is increasingly used to replace other oxidants [1-4]. Conventional oxidizing agents may cause hazards during storage, handling and transportation and therefore, ozone represents a good choice to prevent these disadvantages. This is because ozone can neither be stored nor shipped due to its inherent instability [1] and therefore, it is usually generated on the site where it is used. HV short-pulse power has been shown to be very effective in applications for plasma synthesis [5]. The main merits of using short-pulse power are that the temperature of the ions and of the neutral gas does not increase much above the ambient during the short duration of the pulse [6], and breakdown leading to an arc and collapse of the gap voltage does not readily occur [7-12]. The high-energy electrons in the streamers dissociate the oxygen molecules present in the air into atoms and these collide with an oxygen molecule and a third particle to produce ozone [2, 13].

The use of very short HV pulses combined with a dielectric layer placed adjacent to the cathode results in a short lifetime of the streamers. This results in less energy transferred into the ions and the neutral gas, which obviates the need to use elaborate cooling systems to remove the heat from the electrodes, with the consequent increase in the energy cost of generating the ozone. The presence of the dielectric layer mitigates against the development of an arc discharge and thus promotes the development of streamer discharges [14]. The dielectric layer also reduces electron emission from the cathode, which further inhibits the streamer-arc transition [1]. The dielectric layer reduces the charge transported by a single streamer and distributes the streamers over a wide area near the dielectric layer [1].

In the present study, the concentration of ozone and the production yield in g/kWh were determined in a coaxial electrode configuration employing ceramic and PVC layers, and were compared also with the
concentrations of nitrogen 78.08%, oxygen 20.95%, carbon dioxide 0.03%, the maximum of the Hartley absorption band of ozone [2,17]. The measurements were instantaneous and did not suffer from errors that may arise due to the presence of nitrogen oxides in the gas [2]. The output gas from the ozonizer was exhausted to the atmosphere via a charcoal (activated carbon) trap (Figure 1).

2 EXPERIMENTAL TECHNIQUES AND PROCEDURE

2.1 EXPERIMENTAL TECHNIQUES

Figure 1 shows a schematic diagram of the experimental setup to generate ozone. Dry air was obtained from a gas cylinder which had concentrations of nitrogen 78.08%, oxygen 20.95%, carbon dioxide 0.03%, argon 0.93% and traces of neon, helium, methane, krypton, xenon, hydrogen and nitrous oxide [15]. The air was fed axially into the reactor using two flow rates of 1.5 and 3.0 l/min. The flow rate was measured using a flow-stat meter. The concentration of ozone was measured using an ultraviolet (UV) absorption meter at 253.7 nm, which is close to the maximum of the Hartley absorption band of ozone [2,17]. The measurements were instantaneous and did not suffer from errors that may arise due to the presence of nitrogen oxides in the gas [2]. The output gas from the ozonizer was exhausted to the atmosphere via a charcoal (activated carbon) trap (Figure 1).

Figure 1 shows a schematic diagram of the experimental setup to generate ozone. A HV pulse was applied to the central electrode and was obtained from a magnetic pulse compressor (MPC), which can be operated at a variable pulse rate to 500 pulses per second (pps) and to 62 kV peak voltage. A brief description and a circuit diagram of the MPC recently have been given, and further details may be found therein [13]. A positive polarity pulse was applied to the central electrode because with this polarity the production of ozone was higher than with the negative polarity [18, 19]. The positive streamers in the wire-plane geometry in air had substantially more streamers and more branching per discharge rate, gas flow rate and variation of the pitch length of the spiral wire forming the central electrode, were investigated. Throughout this work the measurements were performed in a regime before the streamers transferred into an arc.

2.2 DISCHARGE REACTOR CONFIGURATIONS

Figure 2 shows the electrodes and solid dielectric configurations of three reactors used to produce ozone. Two types of reactors without (Type I) and with (Type II) a solid dielectric layer were employed. All reactors employed coaxial concentric cylindrical electrodes. In both types the central electrode consisted of a spiral wire of 1 mm in diameter wound in either 5 or 10 mm pitch on a PVC tube, either 22 or 26 mm in outer diameter. In Type I, the coiled wire on the PVC tube (10 mm pitch) was placed concentric in a copper cylinder having an inner diameter of 58 mm, which formed the cathode. In Type I, the gaseous gap distance between the wire and the outer cylinder was fixed at 15 mm. Several reactor lengths were employed. A short length of 0.157 m was used for comparison of the performance of three reactors of Type I, Type IIC and Type IIIPa and a long one of 1 m for comparison of Type I with Type IIIPa (Figure 2). The gap distance between electrodes of all the reactors (1 to 5) used for comparison was kept constant at 15 mm.

The second type (Type II) of discharge reactors contained a dielectric layer made of either a ceramic tube (Type IIC) (outer diameter, 58 mm; ceramic layer thickness, 6 mm; length, 157 mm) or a PVC tube (Type IIIPa) (outer diameter, 58 or 38 mm; PVC layer thickness, 4 or 3.5 mm; lengths, 0.1 to 1 m) as a dielectric layer. Three different reactors of Type IIIPa were employed, the details of which are given in Figure 2. The dielectric layer which acts as a barrier to the onset of the breakdown was wrapped on its outside with a copper foil 0.1 mm thick. The copper foil formed the cathode.
the peak of the pulsed voltage were generally <3% of the peak voltage. More details including the oscillations at the tail of the voltage wave, which arose from reflections due to impedance mismatch between the power source and the discharge reactors, were discussed recently [20] and they are omitted here for brevity. The duration of the pulse was determined from the FWHM of the positive voltage, typically 110 ns (Figure 5).
The discharge reactor incorporating a ceramic barrier had the highest energy that can be coupled into it (Figure 4). It will be shown later that this property generally leads to higher ozone concentrations.

Figure 5. Typical input energy plots of Type IIPa reactor (reactor #5) to the discharge as a function of time for different peak pulsed voltages. Conditions: gas, dry air; pressure, 1.01x10^5 Pa; temperature, 26±4°C; pulse repetition rate, 100 pps; flow rate, 3 l/min; details of the reactor as in Table 1 and Figure 2; peak pulsed voltages and peak currents: curve 1, 26.9 kV, 33.5 A; curve 2, 31 kV, 80.5 A; curve 3, 36.6 kV, 103 A; curve 4, 42.8 kV, 173 A; curve 5, 47.1 kV, 213.2 A; curve 6, 49.5 kV, 200 A; curve 7, 51.3 kV, 219.5 A.

Figure 6. Dependence of the concentration of ozone on the energy density input into the discharge. Symbols and conditions as in Figure 5.

Figure 7. Dependence of the concentration of ozone in Type IIPa reactor (reactor #5) on the energy density input into the discharge. Symbols and conditions as in Figure 6.

Figure 6 shows the concentration of ozone as a function of the peak pulsed voltage in reactor (Type IIPa, reactor #5) for different pulse repetition rates. It will be observed that the concentration of ozone at low repetition rates (<50 pps) increased steadily with increasing peak voltage to 62 kV, the maximum voltage available from the MPC source. At higher repetition rates, the ozone concentration increased with increasing voltage, reached a maximum and then started to decrease with a further increase in the voltage. The onset of the decrease in the ozone concentration occurred at high concentrations of ~7000 ppm and using pulse rates >50 pps, with further increasing voltage (Figure 6). It should be noted that this phenomenon was not observed in pure O₃ [20] or in air using a discharge reactor without a dielectric barrier [13]. However, in the latter study, the peak voltage was limited to much lower values due to the onset of complete breakdown of the gap and the ozone concentration was limited to <500 ppm for pulse rates ≤50 pps. The maximum voltage that could be applied to the reactor with the PVC barrier was limited by MPC and not by arc breakdown. A possible reason for the reduction of ozone concentration at higher voltages is that at high concentration of ozone in air, several reactions become possible leading to some losses in the ozone concentration as observed in Figure 6. The following reactions involving the loss of ozone have been reported to occur in air [21].
\[
\begin{align*}
N_2 + O_3 & \rightarrow N_2 + O + O & k_2 = 2 \times 10^{-26} \text{ cm}^3/\text{s} \\
O + O_3 & \rightarrow 2O_2 & k_3 = 1 \times 10^{-13} \text{ cm}^3/\text{s} \\
NO_2 + O_3 & \rightarrow NO_3 + O_2 & k_4 = 3 \times 10^{-17} \text{ cm}^3/\text{s} \\
NO + O_3 & \rightarrow NO_2 + O_2 & k_5 = 1.8 \times 10^{-14} \text{ cm}^3/\text{s} \\
N + O_3 & \rightarrow NO + O_2 & k_5 = 1 \times 10^{-16} \text{ cm}^3/\text{s} \\
O(1D) + O_3 & \rightarrow 2O + O_2, & k_7 = 1.2 \times 10^{-10} \text{ cm}^3/\text{s} \\
O(1D) + O_3 & \rightarrow 2O_2 & k_8 = 1.2 \times 10^{-10} \text{ cm}^3/\text{s} \\
\end{align*}
\]

Ozone may be decomposed also by electron impact [22]
\[e + O_3 \rightarrow e + O_2 + O \] (9)

The reaction rate for (9) has not been measured [22]. Reaction (3) has also been suggested in [1, 23–26] and reaction (5) in [23, 24]. Reaction (5), which involves NO has a larger rate in reducing O_3 than reaction (4). NO is formed in air from the following [21] reactions
\[
N + O = N_2 + NO + k_{10} = 1 \times 10^{-32} \text{ cm}^3/\text{s} \\
N + O_2 = NO + O + k_{11} = 1 \times 10^{-16} \text{ cm}^3/\text{s}
\]

The dependence of the ozone concentration on the input energy density into the discharge is shown in Figure 7. It will be seen that the ozone concentration increased steadily with increasing input energy density to \(\sim 1700 \text{ J/l} \), and then saturation was reached, followed by a reduction in the concentration. Increasing the energy input into the discharge above this level for \(< 400 \text{ pps} \) is counter productive, because the destruction reactions of ozone exceed its formation. For 400 pps, a saturation in the concentration was reached at \(\sim 1000 \text{ J/l} \).

A comparison of the production of ozone and the discharge current on peak pulsed voltage, input energy density and peak discharge current, for three different reactors are presented in Figures 8 to 11. It will be observed that the discharge reactor with the PVC barrier gave the lowest ozone concentration, while the ceramic barrier gave the highest concentration for a fixed applied peak voltage (Figure 8) and a fixed discharge current (Figure 10). Further, at a fixed input energy density into the three reactors, the highest concentration of ozone was obtained with Type IIC containing the ceramic barrier (Figure 9). The reasons for these findings are attributed to the higher field in the gaseous gap of Type IIC (reactor #3) compared to Type IIIa (reactor #4) at a fixed applied voltage. This was because of the higher permittivity of ceramic alumina (5.6 at 1 MHz and room temperature [15]) compared to the PVC (3.3 at 1 MHz and 25°C [15]). Further reasons are its shorter gaseous gap (9 mm in Type IIC reactor #3) compared to 11 mm in Type IIIa (reactor #4). The higher electric field in the gaseous gap at a fixed peak voltage in Type IIC resulted in the production of higher energy electrons leading to a higher production of the O radical and therefore, a higher production of O_3 as observed in Figures 8 and 9. The reason for the higher concentration of ozone in the Type I (reactor #1) than in Type IIIa (reactor #4) (Figure 8) is that the temperature of the reactor containing a PVC dielectric barrier was slightly higher than that in the reactor without a dielectric barrier. It has been reported that a slight increase in the gas temperature of \(\sim 10°C \) led to substantial reduction in the production of ozone of a factor of \(\sim 2 \) in air [27]. In pure oxygen, the ozone production also decreased from 220 to 170 g/m^3 with increa-
Figure 11. Dependence of peak discharge current on pulsed voltage for three different types of reactors. Symbols and conditions as in Figure 8.

Figure 12. Dependence of the concentration of ozone using Type IIIb reactors on applied peak pulsed voltage for different reactor lengths for 1.5 l/min flow rate. Conditions: gas, dry air; pressure, 1.01x10^5 Pa; temperature, 26±4°C; pulse repetition rate, 100 pps; reactor lengths: ● 0.1 m (reactor #6); ■ 0.2 m (reactor #7); ▲ 0.4 m (reactor #8); other details of the reactors as in Table 1 and Figure 2.

Figure 13. Dependence of the concentration of ozone using Type IIIb reactors on applied peak pulsed voltage for different reactor lengths (reactors #6 to 8) for 3.0 l/min flow rate. Conditions and symbols as in Figure 12.

Figure 14. Dependence of ozone production on reactor length for 1.5 l/min flow rate. Conditions: gas, dry air; pressure, 1.01x10^5 Pa; temperature, 26±4°C; pulse repetition rate, 100 pps; reactor lengths: ● 0.1 m (reactor #6); ■ 0.2 m (reactor #7); ▲ 0.4 m (reactor #8); other details of the reactors as in Table 1 and Figure 2.

Figure 15. Dependence of ozone production on reactor length for 3.0 l/min flow rate. Conditions: gas, dry air; pressure, 1.01x10^5 Pa; temperature, 26±4°C; pulse repetition rate, 100 pps; reactor lengths: ● 0.1 m (reactor #6); ■ 0.2 m (reactor #7); ▲ 0.4 m (reactor #8); other details of the reactors as in Table 1 and Figure 2.

3.2 DEPENDENCE OF OZONE PRODUCTION ON REACTOR LENGTH

The dependence of the concentration of ozone on the length of the reactor using Type IIIb is shown in Figures 12 and 13 for 1.5 and 3.0 l/min flow rates, respectively. It will be observed that at fixed applied peak pulsed voltage, the concentration of ozone increased with increasing length of the reactor and decreased with increasing gas flow rate (Figures 12 and 13). This is attributed to the longer residence time of the gas with increasing length of the reactor and decreasing gas flow rate. Typically, the residence time for 1.5 l/min flow rate increased from 2.73 s (reactor #6) to 5.45 s (reactor #7) and to 10.9 s (reactor #8), respectively with increasing length of the reactor, from 0.1 to 0.2 and to 0.4 m. For 3.0 l/min the residence time increased from 1.36 s to 2.73 s and to 5.45 s with increasing reactor length, respectively from 0.1 to 0.2 and to 0.4 m. The longer residence time of the gas in the reactor, the higher would be the production of ozone because of the increased dissociation of O_2 into radicals. This is due to the increased number of collisions with electrons with increasing time, followed by increased collisions of the radicals with O_2 to form O_3. The corresponding energy density input is shown in Figures 14 and 15, respectively for 1.5 and 3.0 l/min flow rates. Figures 14 and 15 show that the ozone productions at a fixed energy density input into the discharge increased with increasing length of the reactor, using the same reactor type, due to the increased residence time of the gas. This is consistent with previously reported results, which showed that for short residence time (<5 s) the concentration of O_3 increased with increasing residence time [27].

3.3 DEPENDENCE OF OZONE CONCENTRATION ON PITCH LENGTH

The dependence of the ozone concentration on the pitch length is shown in Figure 16 using reactor Type IIIc (reactors #9 and 10, Table 1). It will be observed that at a fixed applied peak pulsed voltage and a fixed gas flow rate, the longer pitch length of 10 mm of the wire forming the anode (Figure 2) led to a higher ozone concentration than for 5 mm pitch length (Figure 16). This was the case for both flow rates of 1.5 and 3.0 l/min. A very short pitch winding of the wire forms a continuous solid rod with a consequent lower electric field closer to the wire, due to the large diameter of the PVC on which it was wound. Therefore, the longer pitch length, having a wider separation between the turns of the wire resulted in a higher field near the central electrode leading to a higher production of ozone as indeed observed in Figure 16.
Figure 14. Dependence of the concentration of ozone on input energy density to the discharge for 1.5 l/min flow rate in Type IIPb reactors for different reactor lengths (reactors # 6 to 8). Symbols and other conditions as in Figure 12.

Figure 15. Dependence of the concentration of ozone on energy density input to the discharge for 3.0 l/min flow rate in Type IIPb reactors for different reactor lengths (reactors #6 to 8). Symbols and other conditions as in Figure 12.

Figure 17 shows the dependence of the concentration of ozone on the energy density input into the discharge for different pitch lengths of the anode wire in reactor Type IIIc (reactors #9 and 10). It will be observed from Figure 17 that at a constant energy density input and a constant flow rate of the gas into the reactor, a higher concentration of ozone was obtained. The reason for this is attributed to the presence of a higher electric field near the anode for the longer pitch length, where most of the production of ozone occurs.

3.4 DEPENDENCE OF OZONE CONCENTRATION ON THE FLOW RATE

Figures 16 and 17 show the dependence of the ozone concentration on the flow rate. At a fixed peak pulsed voltage and a fixed pitch length of the wire, the lower flow rate of 1.5 l/min led to a higher production of ozone compared to 3.0 l/min (Figure 16). Similar behavior was observed at a constant energy density input into the discharge (Figure 17).

The increased production of ozone at lower flow rate is attributed to the increased residence time in the reactor as explained in Section 3.2.

3.5 PRODUCTION YIELD OF OZONE

3.5.1 DEPENDENCE ON THE PEAK PULSED VOLTAGE

Figure 18 shows the production of ozone in 1 m long reactor of Type IIPa (reactor #5) vs. peak pulsed voltage for different pulse rates. It will be seen that the production yield initially increased with increasing voltage (<30 kV) for pulse rates ≤100 pps and then decreased with further increase in the applied pulsed voltage. The initial increase in the yield with increasing voltage is attributed to the increased concentration of O3 with increasing voltage (<30 kV) (Figure 6) while the energy input to the discharge increased linearly with voltage (Figure 19).
decrease in the yield at >30 kV (Figure 18) is attributed to the reduction of the concentration of O₃ with increasing voltage (Figure 6) and the larger than linear increase of the energy input into the discharge at higher voltages (Figure 19). The larger increase in the energy input to the discharge was due to the much higher discharge currents with increased voltages (see caption of Figure 5) arising from higher ionization and larger electron velocities at higher voltages leading to increased conductivity of the plasma. Figure 18 also shows that at a fixed pulsed voltage (>30 kV), the production yield decreased with increasing pulse rate. Typically at 37 kV, the yield decreased in this reactor from 89.1 g/kWh at 25 pps to 14.9 g/kWh at 400 pps (Figure 18); this is generally consistent with Equation (1). In the low voltage region (<30 kV) the highest yield was achieved in this reactor at 100 pps of ~94.9 g/kWh at 27 kV applied peak pulsed voltage (Figure 18). It should be noted that it was not possible to attain maxima values of the concentration and of the yield of ozone simultaneously using the same operating conditions.

Figure 18. Dependence of the production yield of ozone on peak pulsed voltage for different pulse rates in Type IIPa reactor (reactor #5). Conditions: gas, dry air; pressure, 1.01x10⁵ Pa; gas temperature, 26±3°C; flow rate, 3.0 l/min; details of the reactor as in Table 1 and Figure 2; pulse repetition rates: ▼ 25 pps; ■ 50 pps; ◆ 100 pps; ▲ 200 pps; ● 400 pps.

Figure 20 shows a comparison of the production yield of ozone for three types of reactors (#1, 3 and 4) while maintaining the same conditions of flow rate (1.5 l/min), reactor length (157 mm), electrode gap separation (15 mm) and pulse rate (100 pps). It will be observed that Type IIC reactor with the ceramic layer produced the highest yield of 122 g/kWh at 24 kV peak pulsed voltage. This is attributed to the higher production of O₃ in the Type IIC reactor at a fixed peak pulsed voltage (Figure 8) and a fixed energy density input (Figure 9) as shown in Section 3.1. The maxima of the production rate for reactors Type IIPa (with PVC dielectric layer) and Type I (without a dielectric layer) were 52 and 60 g/kWh (Figure 20). The production yield of O₃ in the three reactors was strongly dependent on the peak pulsed voltage (Figure 20). This is because the concentration of O₃ (Figures 6, 8, 12, 13 and 16) and the energy input into the discharge (Figure 19) varied with the applied voltage. Figure 21 shows the production rate of O₃ against peak pulsed voltage for two types of reactors of 1 m in length. It will be observed that Type I (reactor #2) had a slightly higher production yield than the reactor containing a PVC dielectric barrier (reactor #5), which was consistent with the results obtained when a shorter length reactors of 157 mm were employed (Figure 20). The higher value of the production yield in Type I was due to larger production of O₃ (see Figure 8 for 157 mm long reactors; for 1 m long reactors figure is omitted for brevity). The energy input into the discharge for the two reactors and for peak pulsed voltages < 27 kV were close (figure omitted for brevity).

3.5.2 DEPENDENCE OF PRODUCTION YIELD ON LENGTH OF THE REACTOR

Figure 22 shows the production yield of O₃ for different lengths of discharge reactors using Type IIIb (reactors #6 to 8). The dependence of
the production yield is related to the dependence of the concentration (Figure 12) and the energy input (Figure 23) on the applied pulsed voltage. It will be observed from Figure 23 that at a fixed applied voltage, the energy input into the discharge increased with increasing length of the reactor. This is because at a fixed applied voltage, the discharge current increased with increasing length of the reactor. The current increased due to the increased conductivity of the plasma discharge with increasing number of streamers in the longer reactors. Figure 22 shows that for 1.5 l/min, the highest yields of 122, 105 and 96 g/kWh were obtained, respectively for 0.2, 0.4 and 0.1 m long reactors.

\[\text{Figure 21. Dependence of the production yield of ozone on peak pulsed voltage for 1 m long reactors. Conditions: flow rate, 3 l/min; pulse rate, 100 pps; type of reactor: ● Type I (reactor #2), ■ Type IIpa (reactor #5).} \]

\[\text{Figure 23. Dependence of the input energy to the discharge per pulse on the applied peak pulsed voltage for different lengths of reactor Type IIpa. Symbols and conditions as in Figure 22.} \]

Initially the production yield increased with increasing ozone concentration and then decreased after reaching a maximum. This is because, as shown in Figure 13, the increase in the concentration with increasing voltage becomes less than linear at HV. Therefore, the input energy is also increased at a higher rate than the concentration of ozone, leading to a reduced yield at higher voltages and therefore at higher concentrations (Figure 25).

Figure 24 shows the production yield as a function of the concentration for three types of reactors. The reactor with ceramic (reactor #3) had the highest yield over a wide range of ozone concentration and it decreased with increasing concentration. For reactors Type I (reactor #1) and Type IIpa (reactor #4) the production yield increased with increasing concentration but the yield values were smaller than for Type IIc. Figure 25 shows the production yield of O3 vs. its concentration for different lengths of reactor Type IIpa. It will be observed that the production yield at a fixed concentration is higher for the longer reactor.

\[\text{Figure 24. Production yield of ozone vs. its concentration for three types of reactors. Conditions: flow rate, 1.5 l/min; reactor length, 157 mm; pulse rate, 100 pps; type of reactor: ● Type I (reactor #1), ■ Type IIc (reactor #3), ▲ Type IIpa (reactor #4).} \]

\[\text{Figure 22. Dependence of the production yield of ozone on peak pulsed voltage in Type IIpa for different lengths of reactors. Conditions: flow rate, 1.5 l/min; pulse rate, 100 pps; reactor lengths: ● 0.1 m (reactor #6), ■ 0.2 m (reactor #7), ▲ 0.4 m (reactor #8).} \]

\[\text{Figure 26 shows the production yield for different pitch lengths of the anode wire in reactor Type IIpc (reactors #9 and 10) as a function} \]

\[\text{3.5.3 DEPENDENCE OF PRODUCTION YIELD ON OZONE CONCENTRATION} \]

Figure 24 shows the production yield vs. ozone concentrations for the three types of reactors. The reactor with ceramic (reactor #3) had
of the ozone concentration. It will be observed that the higher yield of 122 g/kWh was obtained for the longer pitch length of 10 mm and the lowest flow rate of 1.5 l/min (reactor #10). This is attributed to the longer residence time at the lower flow rate and the higher field at a longer pitch length, which led to a higher production of ozone (Figure 16) and therefore a higher yield.

3.5.4 COMPARISON OF PRODUCTION YIELD WITH OTHER WORKS

In commercial systems the production yield of ozone in air was reported to be 50 to 55.6 g/kWh (18 to 20 kWh/kg) [28]. Masuda et al. [19] reported values in dry air using a dielectric barrier with strip plates from 77.4 to 200 g/kWh. Pietsch et al. [29] reported a yield of 27.07 g/kWh in air using a dielectric barrier discharge. Chalmers et al. using a pulsed voltage of 120 ns width, reported a yield of 147 g/kWh in O2 without a dielectric barrier [7, 30]. Our results compare very favorably with the previously reported values of the production yield of ozone in dry air.

4 CONCLUSIONS

1. The current and the input energy into the discharge increased nonlinearly with increasing applied pulsed voltage.
2. The concentration of ozone initially increased linearly with increasing applied pulsed voltage, reached a saturation and then declined with further increasing voltage for pulse rate ≥ 50 pps.
3. The concentration of ozone initially increased with increasing input energy density, reached saturation and then declined with further increase in the input energy density.
4. The concentrations of ozone in the discharge barrier reactors with ceramic were higher than with PVC for the same reactor length and electrode gap distance.
5. The concentration of ozone at a fixed applied pulsed voltage and a fixed input energy density into the reactor increased with increasing reactor length.
6. The concentration of ozone increased with decreasing gas flow rate at a fixed applied pulsed voltage and a fixed input energy density into the discharge.
7. The concentration of ozone increased with increasing the pitch length of the spiral windings of the anode wire.
8. The production yield of ozone (g/kWh) at a fixed applied pulsed voltage decreased with increasing pulse repetition rate.
9. The production yield of ozone initially increased with increasing voltage and then decreased at a fixed pulse repetition rate.
10. The production yield of ozone was higher with a ceramic dielectric barrier discharge than with PVC and without a dielectric layer.
11. The input energy to the discharge per pulse increased with increasing reactor length.
12. The production yield of ozone over a wide range of concentrations was higher in the reactor containing a ceramic dielectric barrier than with PVC or without a barrier.

REFERENCES

IEEE Transactions on Dielectrics and Electrical Insulation

Vol. 8 No. 4, August 2001

Manuscript was received on 22 September 2000, in revised form 7 February 2001.