<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>肺胞上皮細胞における水チャンネル aquaporin-5 の遺伝子発現調節に関する分子生物学的研究</td>
</tr>
<tr>
<td>著者</td>
<td>野村 城司</td>
</tr>
</tbody>
</table>

Kumamoto University
熊本大学学位論文

肺胞上皮細胞における水チャネル aquaporin-5 の
遺伝子発現調節に関する分子生物学的研究

2007

野村 城司

Molecular Biological Study on The Transcriptional
Regulation of Aquaporin-5 Gene Expression
in Alveolar Epithelial Cells

Johji Nomura
Molecular biological study on the transcriptional regulation of aquaporin-5
gene expression in alveolar epithelial cells

Johji Nomura

The alveolar epithelium, which covers the internal surface of the lung, is composed of two highly specialized cell types, alveolar type I (ATI) cells and alveolar type II (ATII) cells. ATI damage is a major hallmark of many pulmonary diseases. Following injury, the alveolar epithelium is repaired by the proliferation and transdifferentiation of ATII cells into ATI cells. However, the mechanisms that underlie the regulation of the transdifferentiation of ATII cells into ATI cells have not yet been elucidated. In the distal lung, AQP5 is highly and selectively expressed in ATI cells, suggesting that AQP5 expression may be coordinately regulated with ATI cell differentiation.

In addition, it has been reported that targeted deletion of AQP5 in mice results in a significant decrease in osmotic water permeability of the alveolar–capillary barrier in distal lung, suggesting that AQP5 in ATI cells plays an important role in maintaining water homeostasis in the lung. Previous studies revealed that AQP5 expression is decreased at inflammatory region in many pulmonary diseases such as acute lung injury (ALI). Therefore, the pharmacological modulation of lung AQP5 expression may provide a novel approach to treat abnormal fluid clearance in ALI and pulmonary edema.

In this study, the initial objective was to examine the molecular mechanisms underlying the ATI cell–specific expression of the AQP5 gene. The second objective was to examine the pharmacological modulation of AQP5 expression.

1. Regulation of ATI cell–specific expression of the AQP5 gene.

First, I showed that Sp1 positively and Sp3 negatively regulate AQP5 expression. I isolated and analyzed the 1.4-kb 5′-flanking region of the rat AQP5 gene in alveolar epithelial cells. Promoter analysis showed that binding of Sp1 to consensus sites located -1253/-1245 and -74/-66 bp upstream from the transcription start site is important for the activation of the AQP5 promoter in MLE-12 murine lung epithelial cells. In addition, increasing the amount of Sp3 considerably inhibited the AQP5 promoter activity induced by Sp1, in a dose–dependent manner. Moreover, Sp3 is selectively expressed in freshly–isolated rat ATII cells as well as in ATII cells in adult rat
lung. However, the expression of Sp3 gradually decreased in accordance with the cultivation period of ATII cells, leading to ATI–like cells, although the expression of Sp1 was relatively constant. These results indicate that AQP5 gene expression is induced by decreased Sp3 in ATI cells.

Second, I showed that the AQP5 gene is regulated by CpG methylation. The AQP5 promoter containing a putative CpG island was highly methylated in NIH–3T3 or freshly–isolated alveolar epithelial cells, correlating with the repression of this gene in these cells. In contrast, the AQP5 promoter was hypo–methylated in MLE–12 or cultured alveolar epithelial cells, which express high levels of AQP5. Repression of AQP5 transcription in NIH–3T3 cells could be relieved with 5–azacytidine, and in vitro methylation of the AQP5 promoter resulted in inhibition of transcription of the reporter gene in MLE–12 cells. Chromatin immunoprecipitation assays showed that endogenous Sp1 bound to the hypo–methylated, but not highly methylated, AQP5 promoter region. These results demonstrate that the hypo–methylated state of the AQP5 promoter leading to increased Sp1 binding may play a role in regulation of ATI cell–specific expression of the AQP5 gene.

2. Pharmacological regulation of AQP5 expression.

I showed that all–trans retinoic acid (atRA) increases plasma membrane water permeability, AQP5 mRNA and protein, and AQP5 promoter activity in MLE–12 cells. The promoter activation induced by atRA was diminished by mutation at the Sp1/Sp3 binding element (SBE), suggesting that the SBE mediates the effects of atRA. In addition, atRA increased the binding of Sp1 to the SBE without changing the levels of Sp1 in the nucleus. Taken together, these results indicate that atRA increases AQP5 expression through transactivation of Sp1, leading to an increase in plasma membrane water permeability.

In conclusion, these findings demonstrate that Sp1 plays an important role in AQP5 expression, and that the factors regulating Sp1 activity, such as Sp3, DNA methylation and atRA, may be able to regulate the AQP5 expression and the transdifferentiation into ATI cells. The present findings may provide new insights into ATI cell–specific expression and regulation of the AQP5 gene, and into the ATI cell differentiation.
略語表

本論文では以下の略号を使用する。

<table>
<thead>
<tr>
<th>略号</th>
<th>意味</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCA3</td>
<td>ATP-binding cassette transporter A3</td>
</tr>
<tr>
<td>ADH/FDH</td>
<td>alcohol dehydrogenase 5/formaldehyde dehydrogenase</td>
</tr>
<tr>
<td>atRA</td>
<td>all-trans retinoic acid</td>
</tr>
<tr>
<td>AP-1</td>
<td>activator protein-1</td>
</tr>
<tr>
<td>AQP</td>
<td>aquaporin</td>
</tr>
<tr>
<td>ARDS/ALI</td>
<td>acute respiratory distress syndrome/acute lung injury</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine 5′-triphosphate</td>
</tr>
<tr>
<td>BrdU</td>
<td>bromodeoxyuridine</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>Cyclic AMP</td>
<td>cyclic adenosine 5′-monophosphate</td>
</tr>
<tr>
<td>CCSP</td>
<td>clara cell secretory protein</td>
</tr>
<tr>
<td>C/EBP</td>
<td>CCAAT/enhancer binding protein</td>
</tr>
<tr>
<td>ChIP</td>
<td>chromatin immunoprecipitation</td>
</tr>
<tr>
<td>Ct</td>
<td>threshold cycle</td>
</tr>
<tr>
<td>dCTP</td>
<td>deoxyctosine 5′-triphosphate</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s modified Eagle medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediamine tetraacetic acid</td>
</tr>
<tr>
<td>EGTA</td>
<td>[ethylene–bis(oxyethylenenitrilo)]tetraacetic acid</td>
</tr>
<tr>
<td>EMSA</td>
<td>electrophoretic mobility gel shift assay</td>
</tr>
<tr>
<td>ERK</td>
<td>extracellular signal–regulated kinase</td>
</tr>
<tr>
<td>FBS</td>
<td>fetal bovine serum</td>
</tr>
<tr>
<td>FITC</td>
<td>fluorescein isothiocyanate</td>
</tr>
<tr>
<td>5-AC</td>
<td>5-azacytidine</td>
</tr>
<tr>
<td>GAPDH</td>
<td>glyceraldehydes–3–phosphate dehydrogenase</td>
</tr>
<tr>
<td>GFAP</td>
<td>glial fibrillary acidic protein</td>
</tr>
<tr>
<td>GLUT</td>
<td>glucose transporter</td>
</tr>
<tr>
<td>HDAC</td>
<td>histone deacetylase</td>
</tr>
<tr>
<td>HEPES</td>
<td>[2–[4–(2-Hydroxyethyl)–1-piperazinyl]ethanesulfonic acid]</td>
</tr>
</tbody>
</table>
HNF: hepatocyte nuclear factor
HRP: horseradish peroxidase
IgG: immunoglobulin G
IPF: idiopathic pulmonary fibrosis
i.p.: intraperitoneally
KDR/flk-1: kinase domain receptor
KGF: keratinocyte growth factor
LPS: lipopolysaccharide
MAPK: mitogen activating protein kinase
MBD: methyl-CpG-binding domain protein
MeCP: methyl-CpG-binding protein
MEF2: myocyte enhancer factor-2
MLE: murine lung epithelial cell
mRNA: messenger ribonucleic acid
NE: nuclear extract
NF-κB: nuclear factor-κ B
PBS: phosphate buffered saline
PCR: polymerase chain reaction
PE: phycoerythrin
PKA: protein kinase A
PPARγ: peroxisome proliferator-activated receptor γ
RAR: retinoic acid receptor
RARE: retinoic acid response element
RT-PCR: reverse transcriptase–polymerase chain reaction
RXR: retinoic X receptor
SBE: Sp1/Sp3 binding element
siRNA: small interfering RNA
SP: surfactant protein
Sp1: stimulatory protein 1
TF: transcription factor
TGF-β: transforming growth factor-β
TNF-α: tumor necrosis factor-α
Tris: Tris (hydroxymethyl) aminomethane
TRITC: tetramethylrhodamine isothiocyanate
TTF-1: thyroid transcription factor-1
VEGF: vascular endothelial growth factor
本論文は、学術雑誌に掲載された次の論文を基礎とするものである。

(1) *All-trans* retinoic acid increases expression of aquaporin-5 and plasma membrane water permeability via transactivation of Sp1 in mouse lung epithelial cells

(2) The role of CpG methylation in cell type–specific expression of the aquaporin-5 gene
 Nomura J, Hisatsune A, Miyata T, Isohama Y

(3) The roles of transcription factors Sp1 and Sp3 in restricting aquaporin-5 gene expression in alveolar epithelial cells
 J. Biol. Chem., submitted for publication.
 Nomura J, Mikami Y, Hisatsune A, Miyata T, Isohama Y
目次

第1章 緒論... 1

第2章 AQP5遺伝子の細胞種選択的な発現調節に関する検討 4

第1節 背景 .. 4
第2節 目的 .. 5
第3節 実験成績 .. 6

第1項 肺胞上皮細胞におけるAQP5遺伝子の転写調節に関する検討 6
 1) AQP5プロモーター領域における転写因子結合部位の予測 6
 2) AQP5プロモーター領域の解析 ... 8
 3) AQP5プロモーター活性におけるSp1/Sp3 binding element (SBE) の関与 1 0
 4) SBE結合転写因子の同定 .. 1 2
 5) AQP5発現調節におけるSp1の関与 .. 1 4
 6) AQP5発現調節におけるSp3の関与 .. 1 6
 7) Sp1およびSp3の作用部位に関する検討 ... 1 8
 8) AQP5プロモーター活性におけるSp1およびSp3の関与 1 9

第2項 Ⅱ型細胞の初代培養に伴うAQP5発現上昇における

Sp1およびSp3の関与に関する検討 ... 2 0

 1) 形態学的変化および特異的遺伝子の発現変化 ... 2 0
 2) Sp1およびSp3の発現変化 .. 2 2
 3) Sp1およびSp3のDNA結合変化 ... 2 4
 4) AQP5の発現上昇におけるSp1の関与 ... 2 5
 5) AQP5の発現上昇におけるSp3の関与 ... 2 6
 6) Ⅱ型細胞の分化におけるSp1およびSp3の関与 .. 2 7

第3項 周産期肺および成体肺における

AQP5およびSp3の発現変化に関する検討 ... 2 9

 1) In vivoにおけるAQP5およびSp3の時間的発現変化に関する検討 2 9
 2) In vivoにおけるAQP5およびSp3の時空間的発現変化に関する検討 3 1

第4項 AQP5の発現調節におけるDNAメチル化の関与に関する検討 3 3

 1) NIH-3T3およびMLE-12細胞におけるAQP5遺伝子の発現 3 4
 2) AQP5の発現における脱メチル化剤の効果 ... 3 5
 3) AQP5プロモーター領域のDNAメチル化における脱メチル化剤の効果 3 6
第３章 肺胞上皮細胞におけるAQP5発現に対するレチノイシン酸の影響 5 4

第 1 節 背景 ... 5 4
第 2 節 目的 .. 5 5
第 3 節 実験成績 .. 5 6
1) AQP5 protein の発現に対するatRAの効果 .. 5 6
2) 細胞膜水分透過性に対するatRAの効果 .. 5 8
3) AQP5 mRNA の発現に対するatRAの効果 .. 5 9
4) AQP5 mRNA の安定性に対するatRAの効果 .. 6 1
5) AQP5プロモーター活性に対するatRAの効果と作用部位 6 2
6) Sp1活性に対するatRAの効果 .. 6 4
7) In vivoにおけるAQP5protein の発現に対するatRAの効果 6 6

第 4 節 考察 .. 6 7
第 5 節 小括 .. 6 9

第 4 章 総括 .. 7 0

実験の部 ... 7 2

謝 辞 .. 9 2

参考文献 .. 9 3
第1章 緒論

肺は、生命維持に必須な呼吸すなわちガス交換を行う器官で、この機能は肺胞によって担われている。肺胞は、その内腔大部分を覆う肺胞上皮細胞および肺胞を含む毛細血管すなわち肺胞組織から成っている。肺胞上皮細胞は、2種類の高度に分化した上皮細胞、すなわち肺胞II型上皮細胞（以下、II型細胞）および肺胞I型上皮細胞（以下、I型細胞）から構成されている。II型細胞は、大きく立方体の形をした細胞（直径：〜10 µm）で、I型細胞の前駆細胞として知られている1)。II型細胞は、肺の直ちに幅広く肺サファクタントを産生・分泌したり、様々な免疫調節物質を分泌したりすることで肺の恒常性を維持している1)。一方、I型細胞は、肺内腔の約98%以上を覆っており、非常に薄い（〜50 nm）シート状の細胞質を持った細胞（直径：〜100 µm）である2)。I型細胞は、血管内皮細胞と隣接し、肺内腔と血液との間のガス交換や水分代謝調節を行っている2)。急性呼吸窮迫症候群（acute respiratory distress syndrome; ARDS）/急性肺傷害（acute lung injury; ALI）、気腫病変、

特発性肺線維症（idiopathic pulmonary fibrosis; IPF）など様々な呼吸器疾患において、I型細胞の傷害は共通する主な病理的特徴である5)。肺胞が傷害を受けると、I型細胞は基底膜より脱落し、比較的刺激に対して耐性のあるII型細胞が生き残る。一方、修復期に入るとII型細胞が劇的に増殖し始め、一部の細胞がI型細胞に分化することで、肺胞を再構築する11)。この時、慢性的な炎症、傷害の繰り返しや老化的などの理由により、肺胞の修復速度を肺胞の破壊・消滅速度が上回った場合、気腫病変に陥る6)。また、線維芽細胞の増殖などを伴う異常な肺胞修復は、IPFの病理的特徴となっている7)。従って、肺胞修復が正常に起こる供が病態改善や肺胞再生において重要なポイントであろう。しかしながら、肺胞修復の鍵となる段階であるII型細胞からI型細胞への分化調節機構は未だ解明されていない。

II型細胞からI型細胞への分化調節機構が解明されていない理由として、I型細胞に選択的に発現している遺伝子すなわち分化マーカーが発見されてこなかったことが考えられる。例えば、研究が進んでいる神経幹細胞からアストロサイトへの分化調節機構は、glial fibrillar acidic protein (GFAP)といった分化マーカーの発現調節機構の解明により明らかとなった12,13)。そのため、近年、gene chipを用いたmicroarray解析やsuppression subtractive hybridization解析が精力的に行われ、I型細胞特異的遺伝子がいくつか見出された10,14,15)。なかでも、aquaporin-5 (AQP5) は、I型細胞の機能に最も密接に関与しているタンパク質である。AQP5は、I型細胞の内腔側の細胞膜上に存在し、水を選択的に透過させる孔を形成するタンパク質であり、浸透圧勾配に順じた細胞内外への水の移動を促進し、肺胞領域における水の吸収・分泌を支えている16)。AQP5の阻害剤である水銀は、in situにおいて肺胞腔—血管間の水分透過性を阻害することが報告されている19)。また、単離・精
製したⅠ型細胞は他のどの種類の哺乳類細胞よりも高い水分透過性を持っており、その高い水分透過性を水銀は阻害することが報告されている 3）。従って、Ⅰ型細胞におけるAQP5は、肺胞における水分代謝の恒常性を維持するための主要な水分透過ルートを形成している調節タンパク質であると考えられる。加えて、AQP類は、水分子のみならずCO₂ガス分子の細胞膜透過性を亢進させることが報告されている 20-22）。従って、AQP5は、現在までに同定されたⅠ型細胞特異的遺伝子のなかで、ガス交換および水分代謝調節というⅠ型細胞の主要な機能を分子レベルで説明する唯一のタンパク質であり、Ⅰ型細胞の分化マーカーとして最適であると考えられる。

AQP5の発現は、組織または細胞特異的な機構により、高度に調節されている。肺胞領域において、AQP5は、Ⅰ型細胞に発現が限局しており、Ⅱ型細胞、マクロファージおよびその他の間質性の細胞には存在しない 16-18）。肺の発達過程において、AQP5は、形態学的にⅠ型細胞が出現するのと同時期に発現し始める 17）。加えて、Ⅰ型細胞は、Ⅱ型細胞を前駆細胞として分化すると知られており 24），その分化過程においてもAQP5は発現上昇する。例えば、単離・精製したⅡ型細胞をプラスチックプレート上で培養すると、Ⅱ型細胞は数日後にその形質を失いⅠ型細胞様の形態を獲得すると同時に、AQP5などのⅠ型細胞特異的遺伝子の発現は上昇する 25-28）。このような時間的にも空間的にも限定されているAQP5の発現パターンを考えると、AQP5の発現はⅠ型細胞特異的な機構により高度に調節されており、その調節機序は、未だ解明されていないⅠ型細胞の分化調節機構と協調していると示唆される。しかしながら、Ⅰ型細胞におけるAQP5の発現調節機構は明らかになっておらず、何故AQP5がⅠ型細胞に限局した発現を示すのかは謎のままである。

一方、Ⅰ型細胞におけるAQP5の発現調節機構の解明は、Ⅰ型細胞への分化調節機構の解明のみならず、炎症部位の肺機能改善にも役立つ可能性がある。ARDS/ALIやIPFなど多くの呼吸器疾患は、炎症を主症状としており、Ⅰ型細胞の水分代謝調節およびガス交換機能が高度に損なわれた状態を呈する。肺へのアデノウィルス感染 29,30）、気道からのlipopolysaccharide（LPS）注入 31）、プレオマイシン注入 32）、Staphylococcus aureus注入 33）やphospholipase A₂注入 34）などにより作製された実験的動物モデルの肺では、好中球を主体とした炎症応答の結果、血管透過性亢進型肺水腫、ガス交換能低下による低酸素血症を引き起こすが、これらの炎症部位においてAQP5の発現量が低下していることが示されている。また、既にAQP5欠損マウスが作製され、本マウスについての病理学的研究がなされていが、AQP5欠損マウスの75%は出生時致死すること 35,36）、生き残った25%では肺胞腔血管間の水分透過性が野生型に比べ1/10まで減少することが報告されている 37,38）。従って、AQP5は肺胞における水分代謝など肺機能に重要なタンパク質で、炎症反応などにより
AQP5 の発現量が減少することは、肺水腫など I 型細胞の機能異常を伴う種々の呼吸器疾患の病態生理に密接に関与していると考えられる。現に、肺胞内腔の水分クリアランス低下をきたした ARDS の患者では予後が著明に悪化するという臨床データも示されている 39。そのため、AQP5 の発現量を薬理学的に調節できれば、炎症領域における水分代謝やガス交換など肺機能を改善できるのではないかと考えられる。

このような背景の下、AQP5 の I 型細胞選択性の発現調節機構の解明、およびこの発現調節機構に基づいた AQP5 発現量の薬理学的調節を目的として以下の検討を行った。

第 2 章において AQP5 の I 型細胞選択性の発現調節機構を解明するため、AQP5 遺伝子のプロモーター領域を解析し、その発現に重要な転写因子を同定し、I 型細胞での AQP5 発現調節におけるその役割について検討を行った。加えて、転写因子による AQP5 発現調節における DNA メチルの役割について検討した。また、第 3 章において、薬理学的に AQP5 の発現を亢進する薬物を探索し、その作用機序について検討した。

その結果、肺胞上皮細胞における AQP5 の発現には、AQP5 プロモーター内の Sp1/Sp3 binding element (SBE) が重要であること、さらに SBE に結合する転写因子 Sp1 は AQP5 の発現を促進、Sp3 は抑制することが明らかとなった。また、AQP5 プロモーターの DNA メチル化は、Sp1 の SBE への結合を阻害することで、AQP5 の発現を抑制することを明らかにした。これらの知見に基づき、I 型細胞における AQP5 の発現在、抑制因子 Sp3 の発現減少および AQP5 プロモーターの低メチル化状態、それに付随する促進因子 Sp1 の DNA 結合能亢進が関与していることを明らかにした。また、肺胞上皮細胞において、all-trans retinoic acid (atRA) は、Sp1 の DNA 結合能を亢進することで、AQP5 の発現量を上昇させ、同時に細胞膜の水分透過性を亢進させることを明らかにした。

以下に本研究で得られた知見を詳述する。
第2章 AQP5遺伝子の細胞選択的な発現調節に関する検討

第1節 背景

AQP5の発現は、組織または細胞特異的な機構により高度に調節されている。肺胞領域において、AQP5は、I型細胞の内腔側に発現が限局しており、II型細胞、マクロファージおよびその他の間質性の細胞には存在しない。肺の発達過程において、AQP5は、形態学的にI型細胞が出現するのと同時期に発現が始める。加えて、I型細胞は、II型細胞を前駆細胞として分化すると知られており、その分化過程でAQP5は発現上昇してくる。このような時間的にも空間的にも限定されたAQP5の発現パターンを考えると、AQP5はI型細胞特異的な機構により高度にその発現が調節されており、その調節機構は、未だ解明されていない。I型細胞への分化調節機構と協調していると考えられる。しかしながら、I型細胞におけるAQP5の発現調節機構は未だ明らかになっていない。

近年、細胞選択的な遺伝子発現は、細胞機能を司る転写因子とクロマチン構造の可塑性、および両者の相互作用により調節されていることが明らかになってきている(Fig. 1)。例えば、AQPと同様の細胞膜上のトランスポーターであるglucose transporter-4 (GLUT4)は、脂肪細胞と骨格筋細胞に特異的に発現し、グルコースの取り込みに関与しているが、2つの細胞種におけるGLUT4の発現に関わる転写因子は異なることが知られている。すなわち、脂肪細胞では、CCAAT/enhancer-binding protein α (C/EBPα)およびperoxisome proliferator-activated receptor γ (PPARγ)など脂肪細胞を規定する転写因子が、一方、骨格筋細胞においては、MyoDやmyocyte enhancer factor-2 (MEF2)など骨格筋細胞を規定する転写因子が、それぞれGLUT4の発現に重要である。つまり、様々な細胞種は、各々の細胞に特異的な遺伝子を発現しているが、その遺伝子の発現は細胞固有の機構すなわち転写因子により調節されていると考えられる。同様に、I型細胞に特異的なAQP5遺伝子の発現にも、I型細胞に発現するために重要な転写因子の存在が想定される。

一方、転写因子のみならず、クロマチン構造も細胞選択的な遺伝子発現に貢献している。ゲノムが損なう膨大な遺伝情報の大部分は、クロマチン構造をとり収納されているが、必要なとき必要な情報を転写しなければならない。すなわち、凝集していたクロマチン構造を緩め、転写因子のアクセスを容易にすることにより遺伝子の発現を促す。このような遺伝情報の発現調節に重要なクロマチン構造の可塑性は、クロマチンを形成するヒストンのアセチル化、メチル化、リン酸化、さらにDNAのメチル化といったクロマチンへの可逆的な修饰により調節されている。なかでも、DNAのメチル化(5’-CpG-3’配列中のシトシンのメチル化)は脊椎動物のゲノムを直接的に修飾する唯一の機構であり、発生過程でDNAのメチル化が動
的に変化して細胞の分化能が決定されること
18,40, また分化後の組織特異的な遺伝子発現にもメチル化は重要であることが報告されている
50,51. 従って、I型細胞特異的なAQP5遺伝子の発現にDNAのメチル化が関与している可能性が考えられる。

Fig. 1. Regulation of cell type-specific expression of the genes.

第2節 目的

本章では、I型細胞選択的なAQP5遺伝子の発現調節機構の解明を目的として、以下に示す観点で検討を行った。

1. 肺胞上皮細胞においてAQP5の発現を調節する転写因子は何か？（第1項）
2. 同定した転写因子はI型細胞選択的な発現に関与しているか？（第2,3項）
3. DNAメチル化はI型細胞選択的な発現に関与しているか？（第4項）
第3節 実験成績

第1項 肺胞上皮細胞におけるAQP5遺伝子の転写調節に関する検討

本項では，肺胞上皮細胞におけるAQP5の転写調節に重要な転写因子を同定するために，ラットAQP5遺伝子のプロモーターレーキュリー（-1325/+69）をクローニングし，その解析を行った。また，同定した転写因子によるAQP5の発現調節に関する検討を行った。

1）AQP5プロモーターレーキュリーにおける転写因子結合部位の予測

今回クローニングしたラットAQP5プロモーターレーキュリーの塩基配列をFig.2に示した。下記のdatabase,
TFSEARCH (http://www.cbrc.jp/research/db/TFSEARCH.html),
TRANSFAC (http://www.cbil.upenn.edu/cgi-bin/tess/tess),
MatInspector (http://www.genomatix.de/index.html),を基に，本プロモーターレーキュリーの結合が推定される転写因子およびその結合部位を予測したところ，本プロモーターレーキュリー中に多くの転写因子が結合する可能性が考えられた。中でも，多数の遺伝子の発現調節に関与しているSp1やAP-1,7,13,肺胞上皮細胞において特異的遺伝子の発現調節を行っているTTF-1（NKK2.1）,Foxa2（HNF-3β）およびGATA因子,7,14,さらに炎症関連遺伝子の発現調節に関わるNF-κBなど,7,腎胞上皮細胞におけるAQP5の発現調節に密接に関与する可能性が考えられる転写因子の結合が示唆された。
Fig. 2. The sequence of the rat AQP5 promoter region and the putative transcription factor binding elements.

The cloned sequence is represented by the capital letters. The putative transcription factor binding elements identified by database search are underlined. The transcription start site (+1) is indicated by the bent arrow. The italic letter indicates the amino acid.

M
2) AQP5 プロモーター領域の解析

AQP5 プロモーター内において AQP5 の転写調節に重要な領域を同定するために、まず、AQP5 プロモーターDNA を 5'末端から連続的に削り、ルシフェラーゼ遺伝子の上流に組み込んだ種々のレポータープラスミドを作製した。さらに、これらのプラスミドをマウス肺胞上皮細胞株 MLE-12 細胞に遺伝子導入し、プロモーター活性を測定した。

その結果、転写開始部位を+1 と定義した時、-1325/-1240 領域の欠損により全長 DNA に対して約 60%、-764/-656、-505/-376 および-160/-46 の欠損によりそれぞれ約 50% と、プロモーター活性の著明な減少が認められた（Fig. 3）。このことから、これらの領域には、AQP5 の発現を促進する転写促進部位が含まれていることが示唆された。また、-1239/-954 および-655/-625 の領域を欠損させると、プロモーター活性が著明に増加したことから、両領域における転写抑制部位の存在が考えられた（Fig. 3）。さらに、-160/-46 の領域の欠損は、AQP5 の転写活性をほぼ完全に消失させることから、この領域が AQP5 の基本転写活性に必要な部位を含んでいることが示唆された。

そこで、前述の database を用いて、この基本転写活性に必要な領域に含まれる転写因子結合部位を探索したところ、Sp1/Sp3 および NF-1 の結合部位が見出された。
Fig. 3. The effects of 5'-deletion of the rat AQP5 promoter region in MLE-12 cells. MLE-12 cells were transiently transfected with the indicated AQP5 5'-flanking region deletion constructs. Luciferase activity was then assessed after 48 h. Results represent the means ± SD of three independent experiments.
3) AQP5 プロモーター活性における Sp1/Sp3 binding element の関与

転写因子 Sp1 は、肺胞上皮細胞特異的遺伝子である T1αや surfactant protein-B (SP-B) の発現に必要な転写因子であると報告されており 55,60, AQP5 の肺胞上皮細胞における発現
にも Sp1 が関与している可能性が考えられた。今回クローニングした AQP5 プロモーター
上で、Sp1/Sp3 binding element (SBE) と考えられる配列は、Fig. 3 で示された転写促進
部位を含む領域である-1325/-1240 に 1 カ所および-160/-46 に 3 カ所存在していた。そこで、AQP5 のプロモーター活性における SBE の重要性を調べるため、それぞれの SBE に
変異を挿入したルシフェラーゼコンストラクトを作製、MLE-12 細胞に遺伝子導入し、プロ
モーター活性を測定した。なお、本実験において、上流側から-1253/-1245, -133/-125, -74/-66 および-53/-45 にそれぞれ位置する SBE を SBE-A, -B, -C および-D と名付け、
各 SBE の変異体を Mut A, B, C および D と名付けた (Fig. 4A)

その結果、Mut A におけるプロモーター活性は、全長 DNA の活性に対して約 1/2 と減弱
した (Fig. 4B)。また、下流側の 3 つの SBE すなわち SBE-B, -C および-D の欠損 (A-
231/-46) において、全長 DNA の約 1/3 と活性の著明な減少が認められた (Fig. 4B). さ
らに、下流側に位置する 3 つの SBE すなわち SBE-B, -C および-D において、それぞれに
変異を挿入したところ、SBE-B および-D の変異 (Mut B and D) では、野生型に比べ、プ
ロモーター活性に著明な変化はなく、SBE-C の変異 (Mut C) により、プロモーター活性は
約 1/4 まで減少した (Fig. 4B).

以上の成績より、AQP5 のプロモーター活性には、上流側と下流側に位置する 2 カ所の SBE
すなわち SBE-A および-C が重要であることが明らかとなった。また、SBE-C は転写開始
部位に近く、AQP5 プロモーターの最小限の活性に必要であることから、SBE-C は AQP5
の基本転写活性に重要であることが示唆された。
Fig. 4. The effect of site-directed mutagenesis at SBEs on rat AQP5 promoter activity in MLE-12 cells.

(A) The sequence of SBEs in the AQP5 promoter and mutated SBEs. SBEs are designated SBE-A, -B, -C and -D beginning farthest upstream of the transcription start site. Mut A, B, C and D indicate mutations at each SBE. The **bold letters** indicate putative SBEs. (B) MLE-12 cells were transiently transfected with the indicated AQP5 promoter constructs. Luciferase activity was then assessed after 48 h. Results represent the means ± SD of three independent experiments.
4) SBE 結合転写因子の同定

AQP5 プロモーター活性に SBE が重要な役割を果たしていることが分かった。次に、この SBE に結合する転写因子を同定するために、MLE-12 細胞から抽出した核タンパク質および AQP5 プロモーター中の SBE をブロープとして用い、EMSA を行った。

Fig. 5A は、SBE-A についての結果を示している。Lane 2 に示すように、主な 4 つの SBE-A/タンパク質複合体（complex-1~4）が確認された。Complex-1 は、抗 Sp1 抗体の添加により消失し、arrowhead で示すようにスーパーシフトしたことから、Sp1 による結合であると確認された（lane 3）。また、complex-2 および-3 は、抗 Sp3 抗体の添加により消失したことから、Sp3 による結合であることが確認された（lane 4）。さらに、Sp1/Sp3 consensus sequence をブロープとして用いた実験（lane 6~9）においても、上記と同様の complex が認められ、これらの complex は、Sp1 および Sp3 によるものであることが確認された。Complex-4 は、核タンパク質を入れていない実験（lane 1）においても検出されたことから、非特異なものであると考えられた。また、complex-1、-2 および-3 は、非標識 SBE-A の添加により消失し（lane 12~13）、非標識の変異挿入 SBE-A では消失しなかった（lane 14~16）ことから、Sp1 および Sp3 は、変異挿入 SBE-A ではなく SBE-A に結合することが確認された。

次に、SBE-C をブロープとして用いた EMSA の結果を Fig. 5B に示した。Lane 1 に示すように、主な 3 つの SBE-C/タンパク質複合体（complex-1~3）が確認された。Complex-1 は、抗 Sp1 抗体の添加により消失し、arrowhead で示すようにスーパーシフトしたことから、Sp1 による結合であると確認された（lane 2）。また、complex-2 は、抗 Sp3 抗体の添加により消失したことから、Sp3 による結合であることが確認された（lane 3）。しかしながら、complex-2 のバンド強度は complex-1 と比べると弱いことから、SBE-C には、Sp3 よりもむしろ Sp1 の方が結合しやすいことが示唆された。さらに、complex-1 および-2 は、非標識 SBE-C の添加により消失し（lane 5 and 6）、非標識の変異挿入 SBE-C により消失しなかった（lane 7 and 8）ことから、Sp1 および Sp3 は変異挿入 SBE-C ではなく SBE-C に結合することが確認された。

これらの結果より、SBE-A には Sp1 および Sp3 が、SBE-C には主に Sp1 が結合することが明らかとなった。
Fig. 5. EMSA analyses of Sp1 and Sp3 binding in MLE-12 cells.

(A) EMSA experiments using radiolabeled SBE-A or a Sp1/Sp3 consensus sequence as probes. Nuclear extracts from MLE-12 cells were incubated with radiolabeled SBE-A or Sp1/Sp3 consensus oligonucleotides and subjected to 4% native PAGE. DNA-protein complexes were analyzed by autoradiography. The arrowhead indicates a super-shifted band. (B) EMSA experiments using radiolabeled SBE-C as a probe. Nuclear extracts from MLE-12 cells were incubated with radiolabeled SBE-C oligonucleotides and subjected to 4% native PAGE. DNA-protein complexes were analyzed by autoradiography. The arrowhead indicates a super-shifted band.
5) AQP5 発現調節における Sp1 の関与

ここまでで、AQP5 プロモーター活性には、SBE が重要であり、さらに AQP5 プロモーター中 SBE に Sp1 および Sp3 が結合することが分かった。Sp1 および Sp3 は、Sp/XKLF ファミリーに属する転写因子であり、GC/GT box と呼ばれるグアニン富んだ DNA 配列に結合し、ターゲット遺伝子の発現を調節する 63)。また、両転写因子は、DNA 結合ドメインである zinc finger domain や activation domain など構造的に極めて類似し、同じ DNA 配列に結合するものの、異なる機能を持っていることが知られている。すなわち、Sp1 は転写活性化因子として機能する一方で、Sp3 はターゲット遺伝子または細胞種に応じて、弱い転写活性化因子として機能する場合と抑制因子として機能する場合が報告されている。

そこで次に、Sp1 および Sp3 がそれぞれ AQP5 の発現調節にどのように関与しているか検討した。

まず、Sp1 について調べた。MLE-12 細胞に AQP5 プロモーター（−1325/+69）ルシフレラーゼプラスミドと Sp1 発現プラスミドを同時に遺伝子導入し、プロモーター活性を測定した。なお、この時の Sp1 の発現量は Western blotting にて確認した（Fig. 6A, lower panel）。その結果、Sp1 の過剰発現により AQP5 プロモーター活性は、著明に亢進され（最大約 3.5 倍）、その亢進作用は Sp1 の発現量依存的であった（Fig. 6A）。次に、AQP5 プロモーター活性に対する Sp1 阻害剤 mithramycin A の効果について調べた。Fig. 6B に示すように、mithramycin A 处理により AQP5 プロモーター（−1325/+69）活性は、コントロールの約 75% に有意に抑制された。

さらに、内因性 AQP5 mRNA の発現に対する Sp1 の影響を調べるために、以下の実験を行った。まず、MLE-12 細胞に mithramycin A を処理し、Northern blotting にて AQP5 mRNA の発現量を調べた。その結果、mithramycin A 処理後、12 および 24 時間で AQP5 mRNA の発現量は低下していた（Fig. 6C）。次に、MLE-12 細胞に Sp1 に対する siRNA を導入し、real-time quantitative RT-PCR にて AQP5 mRNA の発現量を調べた。Fig. に示すように、用いた 2 種類の Sp1 siRNA により、有意に Sp1 mRNA レベルが減少しており、この時 AQP5 mRNA の発現量も有意に抑制されていた。また、この条件下では、Sp3 mRNA の発現量に有意な差は認められなかった（Fig. 6D）。

これらの結果より、MLE-12 細胞において、Sp1 は AQP5 の転写を促進することが明らかとなった。
Fig. 6. Sp1 positively regulates AQP5 expression in MLE-12 cells.
(A) The effect of Sp1 overexpression on AQP5 promoter activity. Upper panel: MLE-12 cells were transiently co-transfected with 0.5 μg of -1325/+69 AQP5 promoter construct and the indicated amounts of Sp1-expressing plasmid. Luciferase activity was then assessed after 48 h. Results represent the means ± SD of three independent experiments. *p<0.01 vs. control. Lower panel: Whole cell lysates of transfected cells were analyzed by Western blotting using anti-Sp1 antibody. (B) The effect of mithramycin A on AQP5 promoter activity. MLE-12 cells were transiently transfected with -1325/+69 AQP5 promoter construct. After transfection, cells were treated with 1 μM mithramycin A for 24 h. Luciferase activity was then assessed. Results represent the means ± SD of three independent experiments. *p<0.01 vs. control. (C) The effect of mithramycin A on endogenous expression of AQP5 mRNA in MLE-12 cells. Cells were treated with 1 μM mithramycin A for the indicated time period, and harvested to extract the mRNA at each time point. Northern blotting was performed using radiolabeled cDNA probes for AQP5 and β-actin. (D) The effects of Sp1 siRNAs on endogenous AQP5 expression in MLE-12 cells. MLE-12 cells were incubated with 100 nM Sp1 siRNA (#1) and 200 nM Sp1 siRNA (#2) for 72 h, and harvested to extract total RNA. The levels of AQP5, Sp1 and Sp3 mRNA were determined by real-time quantitative RT-PCR, and normalized to the level of GAPDH mRNA. Results represent the means ± SE from three independent experiments performed in duplicates. *p<0.05 vs. control.
6) AQP5 発現調節における Sp3 の関与

次に、AQP5 発現調節における Sp3 の関与について調べた。まず、MLE-12 細胞に AQP5 プロモーター（-1325/+69）ルシフェラーゼプラスミドと Sp3 発現プラスミドを同時に遺伝子導入し、プロモーター活性を測定した。なお、この時の Sp3 の発現量は Western blotting にて確認した（Fig. 7A, lower panel）。その結果、Sp3 の過剰発現により AQP5 プロモーター活性は、有意に抑制され、その抑制効果は、Sp3 の発現量依存的であった（Fig. 7A）。次に、アンチセンス Sp3 プラスミドの AQP5 プロモーター（-1325/+69）活性に対する効果を調べた。Fig. 7B に示すように、アンチセンス Sp3 プラスミドの導入量依存的に内因性 Sp3 の発現量は低下し、この時 AQP5 プロモーター（-1325/+69）活性は、有意に亢進された。さらに、内因性 AQP5 mRNA の発現に対する Sp3 の影響を調べるために、MLE-12 細胞に Sp3 発現プラスミドを遺伝子導入し、real-time quantitative RT-PCR にて AQP5 mRNA 量を調べた。その結果、Sp3 の過剰発現により、内因性 AQP5 mRNA の発現量は有意に抑制された（Fig. 7C）。

これらの結果から、MLE-12 細胞において、Sp3 は AQP5 の転写を抑制することが明らかとなった。
Fig. 7. Sp3 negatively regulates AQP5 expression in MLE-12 cells.
(A) The effect of Sp3 overexpression on AQP5 promoter activity. Upper panel: MLE-12 cells were transiently co-transfected with 0.5 µg of −1325/+69 AQP5 promoter and the indicated amounts of Sp3-expressing plasmid. Luciferase activity was then assessed after 48 h. Results represent the means ± SD of three independent experiments. *p<0.01 vs. control. Lower panel: Whole cell lysates of transfected cells were used in Western blotting (anti-Sp3 antibody). (B) The effect of antisense Sp3 expression on AQP5 promoter activity. Upper panel: MLE-12 cells were transiently co-transfected with 0.5 µg of −1325/+69 AQP5 promoter construct and the indicated amounts of antisense Sp3-expressing plasmid. Luciferase activity was then assessed after 48 h. Results represent the means ± SD of three independent experiments. *p<0.01 vs. control. Lower panel: Whole cell lysates of transfected cells were analyzed by Western blotting using anti-Sp3 antibody. (C) The effect of Sp3 overexpression on endogenous AQP5 expression in MLE-12 cells. MLE-12 cells were transfected with Sp3-expressing plasmid and harvested to extract total RNA. The level of AQP5 mRNA was determined by real-time quantitative RT-PCR, and normalized to the level of GAPDH mRNA. Results represent the means ± SE from three independent experiments performed in duplicates. *p<0.01 vs. empty vector.
7) Sp1 および Sp3 の作用部位に関する検討

これまでの検討により、Sp1 は AQP5 の発現を促進し、Sp3 は逆に抑制することが分かった。そこで、Sp1 および Sp3 は、それぞれどの SBE を介して AQP5 の発現を調節しているか検討するために、MLE-12 細胞に AQP5 プロモーター（-1325/+69）または（-160/+69）ルシフェラーゼプラスミド、および Sp1 または Sp3 発現プラスミドを遺伝子導入し、プロモーター活性を測定した。

その結果、AQP5 プロモーター（-1325/+69）において、Sp1 はその活性をコントロールの約 2 倍に亢進させたのに対し、Sp3 は活性を抑制した（Fig. 8, left panel）。一方、AQP5 プロモーター（-160/+69）において、Sp1 はその活性をコントロールの約 3 倍に亢進させ、Sp3 は AQP5 プロモーター（-1325/+69）の時とは異なり活性を亢進させ、抑制効果は認められなかった（Fig. 8, right panel）。

これらの結果より、Sp1 は、SBE-A および-C を介して AQP5 の転写を促進し、一方で Sp3 は SBE-A を介して AQP5 の転写を抑制することが示唆された。

Fig. 8. The effects of Sp1 or Sp3 overexpression on AQP5 promoter (-1325/+69) or (-160/+69) activity.
MLE-12 cells were transiently transfected with the indicated AQP5 promoter construct and Sp1- or Sp3-expressing plasmid. Luciferase activity was then assessed after 48 h. Results represent the means ± SD of three independent experiments.
8) AQP5 プロモーター活性における Sp1 および Sp3 の関与

Sp1 および Sp3 は、同じ配列を認識し結合する。そのため、Sp1 および Sp3 が同じ SBE へ結合する時に競合するのであれば、Sp1 および Sp3 の発現量バランスにより AQP5 プロモーター活性は影響を受ける可能性がある。この可能性を検討するために、MLE-12 細胞に AQP5 プロモーター (-1325/+69) ルシフェラーゼプラスミド、一定量の Sp1 発現プラスミドおよび様々な量の Sp3 発現プラスミドを同時に遺伝子導入し、プロモーター活性を測定した。

その結果、Sp1 の過剰発現により約 2 倍に亢進された AQP5 プロモーター (-1325/+69) 活性は、Sp3 の発現量依存的に抑制された (Fig. 9)。

このことより、Sp1 および Sp3 の発現量バランスの変化は、AQP5 遺伝子の発現を調節し得ることが示唆された。また、Sp3 は主に SBE-A に作用することから考えると、Sp1 および Sp3 の競合は、SBE-A で起こっていることが示唆された。

Fig. 9. The effect of Sp3 on Sp1–Induced AQP5 promoter activity. MLE-12 cells were transiently co-transfected with 0.5 μg of -1325/+69 AQP5 promoter construct, 0.75 μg of Sp1–expressing plasmid, and the indicated amounts of Sp3–expressing plasmid, and incubated for 48 h. Luciferase activity was then assessed. Results represent the means ± SD of three independent experiments. *p<0.01 vs. control. **p<0.01 vs. the Sp1–induced activity.
第2項 Ⅱ型細胞の初代培養に伴うAQP5発現上昇におけるSp1およびSp3の関与に関する検討

ラットから単離・精製したⅡ型細胞は、プラスチックプレート上で長期間培養することにより、その特徴を失い、Ⅰ型細胞に極めて近い形態および生化学的特徴を有する細胞へと自発的に分化することが知られている２５－２８）．すなわち、Ⅱ型細胞は、その分化に伴いAQP5などのⅠ型細胞特異的遺伝子を発現誘導する機構を獲得することが推定される．そこで、Ⅱ型細胞の分化に伴うAQP5の発現誘導において、Sp1およびSp3が関与しているのか否かを調べた．

1）形態学的変化および特異的遺伝子の発現変化

まず、ラット肺よりⅡ型細胞を単離・精製し、プラスチックプレート上にて5日間培養し、Ⅰ型細胞様の細胞へと分化させた．本培養系で観察されたⅡ型細胞の分化をキャラクタライズするために、形態学的変化およびⅡ型細胞とⅠ型細胞特異的遺伝子の発現変化を経日的に調べた．

培養1日目におけるⅡ型細胞では、細胞表面積に対する核の割合が高く、核周辺に肺サファクタントの貯蔵部位であるラメラ体が認められた．一方、培養5日目の細胞では、1日目の細胞と比べ細胞表面積が広く、薄く扁平化し、ラメラ体は観察されなかった（Fig.10A）．この間、Ⅱ型細胞は単離直接から2日目まで増殖し、単一層を形成後静止期に入った（Fig.10B）．さらに、この形態学的な変化および増殖活性と相関して、培養1日目において高いレベルで発現が認められたⅡ型細胞特異的遺伝子であるsurfactant protein-Aおよび-C（SP-Aおよび-C）は、培養2日目以降の細胞では、発現が見られなかった．一方で、Ⅰ型細胞特異的遺伝子であるAQP5およびT1αは、培養1日目の細胞では発現しておらず、2日目以降、培養時間依存的に発現量が上昇した（Fig.10C）．

以上のことから、本培養系においてⅡ型細胞は、培養初期（増殖期）にはⅡ型細胞、一方培養5日目（静止期）にはⅠ型細胞様の形質をもつこと、さらにAQP5の発現が培養時間に依存して上昇することが確認された．
Fig. 10. Characterization of trans-differentiation of alveolar type II cells into type I cell-like cells.

Alveolar type II cells were isolated from adult rat lungs, and cultured at 37°C in humidified 5% CO₂ and 95% air atmosphere. The day of isolation is designated as Day 0. (A) Morphological changes of alveolar type II cells cultured for 1 or 5 days. Phase contrast micrographs of alveolar type II cells on Day 1 or 5. Alveolar type II cells on Day 1 lost their lamellar bodies and began to spread. The cells on Day 5 resembled alveolar type I cells, becoming flatten and thin cytoplasm. (B) The proliferation activity during the cultivation of alveolar type II cells. Cells on the indicated day were pulsed with 10 μM BrdU for 2 h, harvested and then subjected to Flow cytometry analysis using anti-BrdU antibody. Cells on the indicated day were also counted. (C) The expression patterns of alveolar type I or type II cell-specific genes during the cultivation of alveolar type II cells. Total RNA was extracted on the indicated day and semi-quantitative RT-PCR was performed. PCR cycle: 25 cycles for AQP5 and GAPDH detection, 20 for T1α, SP-A, and -C.
2）Sp1 および Sp3 の発現変化

第1項の結果から、AQP5 の発現に Sp1 および Sp3 が重要であることが明らかとなったが、Ⅱ型細胞からⅠ型様細胞への分化に伴う AQP5 の発現誘導における Sp1 および Sp3 の関与については不明である。そこで、まず、本培養系における Sp1 および Sp3 の発現量を調べるために、培養時間毎に抽出した total RNA および核タンパク質を用いて、それぞれ semi-quantitative RT-PCR および Western blotting を行った。

その結果、Ⅱ型細胞の Sp1 mRNA および核内 Sp1 protein の発現量は、各培養時間においてほぼ一定であった (Fig. 11A and B)。一方、Sp3 mRNA および核内 Sp3 protein の発現量は、培養2日目から減少し始め、培養5日目ではほぼ消失した (Fig. 11A and B)。また、免疫蛍光染色法にて Sp3 protein の発現量を確認した結果、Western blotting の結果と同様に培養5日目において Sp3 protein の発現は認められなかった (Fig. 11C)。

これらの結果より、本培養系において、Sp1 はほぼ一定のレベルで発現しているのに対し、Sp3 の発現は培養5日目では消滅することが明らかとなった。また、Sp1 は AQP5 発現の促進因子で、一方 Sp3 は抑制因子であること、Sp1 と Sp3 の発現量バランスにより AQP5 のプロモーター活性は影響を受け得ることから、培養後期における AQP5 の発現上昇には、抑制因子 Sp3 の発現減少が関与している可能性が示唆された。
Fig. 11. The expression patterns of Sp1 and Sp3 during the cultivation of alveolar type II cells.
(A) The expression patterns of Sp1 and Sp3 mRNAs. Alveolar type II cells were isolated from adult rat lungs, and cultured at 37°C in humidified 5% CO₂ and 95% air atmosphere. Total RNA was extracted on the indicated day and semi-quantitative RT-PCR was performed. PCR cycle: 25 cycles for GAPDH detection, 20 for Sp3, 30 for Sp1. (B) The expression patterns of Sp1 and Sp3 proteins. Nuclear extracts were prepared at the indicated day and subjected to Western blotting with anti-Sp1 and anti-Sp3 antibodies. (C) Immunocytochemistry for Sp3 and AQP5. Alveolar type II cells on Day 1 and 5 were fixed, permeabilized, and incubated with anti-Sp3 or anti-AQP5 antibodies and propidium iodine (PI). Scale bar: 50 μm. Similar results were obtained in two separate experiments.
3) Sp1 および Sp3 の DNA 結合変化

Sp1 および Sp3 は、AQP5 プロモーター上の SBE を介して、AQP5 の発現を調節している。そこで、本培養系において、実際に内因性の AQP5 プロモーターに Sp1 および Sp3 が結合しているのか、もし結合しているのであれば、その結合は培養によりどのように変化するのか ChIP 法にて調べた。まず、ラットから単離後 1 および 5 日間培養したⅡ型細胞をそれぞれホルムアルデヒドで固定し、可溶化クロマチンを調製した。さらに抗 Sp1 および抗 Sp3 抗体で免疫沈降し、Sp1 および Sp3 と共に沈降した DNA を抽出型として PCR に用いた。第 1 項で Sp1 および Sp3 は共に SBE-A に結合し、SBE-A 上で競合することが示唆されたので、SBE-A を含む領域（−1325/−1185）を増幅するプライマーを用いた。

その結果、抗 Sp1 および抗 Sp3 抗体で免疫沈降した DNA を抽出型に用いた PCR において、タンパク質と DNA の結合を示す適切なサイズ（141 bp）のバンドが検出された。このことより、Sp1 および Sp3 は、内因性に SBE-A に結合していることが示された。また、Sp1 の DNA 結合は、培養 1 日目よりも 5 日目で著明であり、一方 Sp3 の結合は、培養 5 日目で消失した（Fig. 12）。

これらの結果より、培養 5 日目における Sp3 発現の消失は、Sp3 の SBE-A への結合量低下および Sp1 の SBE-A への結合量の増加と相関することが確認された。

Fig. 12. DNA–bindings of Sp1 and Sp3 at the AQP5 promoter region on Day 1 and 5.
The soluble chromatin extracts were immunoprecipitated with anti–Sp1 and anti–Sp3 antibodies, or with nonspecific immunoglobulin (control IgG), and then subjected to PCR with primer pairs spanning −1325/−1185 of the rat AQP5 5′–flanking region. “Input” indicates that the crude chromatin extracts prior to immunoprecipitation were also analyzed. PCR cycle: 40 cycles. Similar results were obtained in two separate experiments.

24
4) AQP5 の発現上昇における Sp1 の関与

次に、本培養系において、Sp1 が AQP5 の発現を調節しているか検討するために、単離後 1 日間培養したⅡ型細胞に Sp1 阻害剤である mithramycin A を 24 または 48 時間処理し、AQP5 mRNA の発現量を semi-quantitative RT-PCR にて調べた。

その結果、mithramycin A を処理することにより、AQP5 の mRNA 発現上昇は著明に抑制された (Fig. 13)。従って、Ⅱ型細胞の長期培養において、Sp1 が AQP5 の発現を正に調節していることが確認された。

<table>
<thead>
<tr>
<th>Mithramycin A</th>
<th>Day 2 (24 h)</th>
<th>Day 3 (48 h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Fig. 13. The effect of mithramycin A on AQP5 expression during the cultivation of alveolar type II cells.
Alveolar type II cells on Day 1 were treated with 100 nM mithramycin A, and harvested after 24 or 48 h for total RNA. Semi-quantitative RT-PCR analysis was performed. PCR cycle: 30 cycles for AQP5 and GAPDH detection. Similar results were obtained in two separate experiments.
5) AQP5 の発現上昇における Sp3 の関与

また、本培養系において、Sp3 が AQP5 の発現を調節しているか検討するために、単離後1日間培養した II 型細胞に Sp3 現在プロモーターを遺伝子導入し、48 または 96 時間後の AQP5 mRNA の発現量を semi-quantitative RT-PCR にて調べた。

その結果、Sp3 を過剰発現することにより、AQP5 mRNA の発現上昇は著明に抑制された (Fig. 14B), また、この時の Sp3 の遺伝子導入効率は、Fig. 14A に示すように免疫蛍光染色法にて確認された。

従って、II 型細胞において、Sp3 が AQP5 の発現を負に調節していることが確認された。また、II 型細胞の長期培養における AQP5 の発現誘導に、負の調節因子である Sp3 の発現量減少および AQP5 プロモーター内 SBE への結合減少が関与していることが示唆された。

Fig. 14. The effect of Sp3 overexpression on AQP5 expression during the cultivation of alveolar type II cells.
(A) Alveolar type II cells on Day 1 were transiently transfected with an Sp3-expressing plasmid. Forty-eight or 96 h after transfection, cells were harvested to obtain total RNA. Semi-quantitative RT-PCR was performed. PCR cycle: 30 cycles for AQP5 and GAPDH detection. (B) Immunocytochemistry for Sp3. Alveolar type II cells on Day 1 were transiently transfected with an Sp3-expressing plasmid. Ninety-six hours after transfection, cells were fixed, permeabilized, and incubated with anti-Sp3 antibody and PI. Scale bar: 50 μm. Similar results were obtained in two separate experiments.
6) Ⅱ型細胞の分化における Sp1 および Sp3 の関与

Ⅱ型細胞の初代培養に伴う AQP5 の発現上昇に、Sp1 および Sp3 が関与していることが分かった。Ⅱ型細胞の初代培養と同様、肺の発達過程や肺胞の修復時において AQP5 の発現は、Ⅰ型細胞の出現と密接にリンクしていることから 17), AQP5 の発現は、Ⅱ型細胞からⅠ型細胞への分化と協調的に調節されていると考えられる。そこで、Ⅱ型細胞からⅠ型細胞への分化に Sp1 および Sp3 が関与しているか調べるために、Ⅱ型細胞の初代培養系を用い以下の実験を行った。

まず、Sp1 の関与について検討した。単離後 1 日間培養したⅡ型細胞に Sp1 阻害剤であるmithramycin A を 24 または 48 時間処理し、Ⅱ型細胞およびⅠ型細胞特異的遺伝子の発現量を semi-quantitative RT-PCR にて調べた。その結果、AQP5 同様、Ⅰ型細胞特異的遺伝子である T1αの発現上昇を、mithramycin A 処理により阻害された。一方、Ⅱ型細胞特異的遺伝子であるSP-Aおよび-Cの発現は、コントロールでは消失したのに対し、mithramycin A では、その発現が持続された (Fig. 15A)。

Ⅱ型細胞は、肺サーファクタントを産生・分泌する細胞であり、Ⅱ型細胞をⅠ型細胞へと分化させる本培養系では、肺サーファクタントの分泌能は、培養時間依存的に減少する 62)。そこで、Ⅱ型細胞にmithramycin A を処理し、肺サーファクタント分泌能に対する影響を検討した。Ⅱ型細胞の肺サーファクタント分泌能の測定は、肺サーファクタントの主要構成成分であるphosphatidylcholineの分泌能を測定することで行った。その結果、mithramycin A を処理したⅡ型細胞では、未処理に比べ有意に高い phosphatidylcholine の分泌能を示した (Fig. 15B)。

これらの結果より、本培養系において Sp1 は、Ⅱ型細胞からⅠ型細胞への分化を少なくとも一部調節していることが示唆された。

また、本培養系において、Sp3 がⅡ型細胞からⅠ型細胞への分化を調節しているか検討するために、単離後 1 日間培養したⅡ型細胞に Sp3 発現プラスミドを遺伝子導入し、48 または 96 時間後のⅡ型細胞およびⅠ型細胞特異的遺伝子の発現量を semi-quantitative RT-PCR にて調べた。その結果、Sp3 を過剰発現することにより、T1αの発現上昇は若干抑制されたが、AQP5 に対する抑制効果ほどではなかった。また、Sp3 の過剰発現は、SP-A および-C の発現に影響を及ぼさなかった (Fig. 15C)。

このことより、本培養系において Sp3 は、AQP5 の発現を調節しているが、Ⅱ型細胞からⅠ型細胞への分化に対する関与は低いことが示唆された。
Fig. 15. The effects of mithramycin A or Sp3 overexpression on the differentiation of alveolar type II cells.

(A) The effect of mithramycin A on the expression of alveolar type II cell- or type I cell-specific genes. Alveolar type II cells on Day 1 were treated with 100 nM mithramycin A, and harvested after 24 or 48 h for total RNA. Semi-quantitative RT-PCR analysis was performed. PCR cycle: 30 cycles for GAPDH detection, 25 cycles for T1α, SP-A and SP-C. Similar results were obtained in two separate experiments. (B) The effect of mithramycin A on phosphatidylcholine secretion from alveolar type II cells. Alveolar type II cells were treated with [3H]choline and 100 nM mithramycin A from Day 1 to Day 2. The medium was replaced with fresh medium. After 2 h, radioactivity in the total lipid extracted from the cells and medium was counted. Secretion (%) was expressed as the ratio of counts in the medium/counts in the cell plus medium. Results represent the means ± SE of four independent experiments. *p<0.05 vs. the vehicle-treated control. (C) Alveolar type II cells on Day 1 were transiently transfected with an Sp3-expressing plasmid. Forty-eight or 96 h after transfection, cells were harvested to obtain total RNA. Semi-quantitative RT-PCR was performed. PCR cycle: 30 cycles for SP-A, SP-C and GAPDH detection, 25 cycles for T1α.
第3項 周産期肺および成体肺におけるAQP5およびSp3の発現変化に関する検討

これまで、ラットから単離・精製したⅡ型細胞の初代培養に伴うAQP5の発現上昇には、AQP5の負の調節因子Sp3の発現減少が寄与していることが明らかとなった。次に、in vivoにおけるAQP5の発現にSp3が関与しているか検証した。ラット胎児肺の発達過程において、AQP5は、形態学的にⅠ型細胞が出現するのと同時期に発現する17。さらに、出生後Ⅰ型細胞が成熟していくにつれ、急激に発現が増加していくことが知られる17。

1) In vivoにおけるAQP5およびSp3の時間的発現変化に関する検討

In vivoにおけるAQP5の発現上昇にSp3が関与しているか検討するために、胎児（胎生期16.5、18.5および20.5日目）、新生児（出生後1日目）および成体（7週齢）ラットから肺を摘出、total RNAおよびwhole cell lysateを調製し、semi-quantitative RT-PCRおよびWestern blottingにて、AQP5、Sp3、Ⅱ型細胞特異的遺伝子（ABCA3）およびⅠ型細胞特異的遺伝子（T1α）の発現量を調べた。

その結果、Ⅱ型細胞特異的遺伝子であるABCA3は、胎生期18.5日目から発現が確認され、胎生期20.5日目以降その発現量に大きな変化はなかった（Fig.16B）。一方、Ⅰ型細胞特異的遺伝子であるT1αは、胎生期18.5日目に発現が確認され、その後急激に発現上昇した（Fig.16B）。胎生期18から20日目頃は、Ⅱ型細胞およびⅠ型細胞が分化誘導される時期であり、それぞれの遺伝子の発現変動は、これまでの報告とよく一致した28,63）。T1αの発現上昇と同様に、AQP5mRNAおよびproteinの発現も胎生期20.5日目に確認され、その後急激に発現上昇した（Fig.16A and B）。この時、Sp3proteinは、胎生期16.5から18.5日目までは発現が高かったものの、胎生期20.5日目以降その発現は減少していた（Fig.16B)。
Fig. 16. Temporal expression patterns of AQP5, T1α, ABCA3 and Sp3 in perinatal and adult rat lungs.

(A) Temporal expression pattern of AQP5 mRNA. Lungs were isolated from rats at E16.5, E18.5, E20.5 and P1, and adult rats. Total RNA was prepared and used for semi-quantitative RT-PCR. PCR cycle: 24 cycles for AQP5 mRNA detection, 21 cycles for 18S rRNA detection. (B) Temporal expression patterns of AQP5, T1α, ABCA3 and Sp3 proteins. Lungs were isolated from rats at E16.5, E18.5, E20.5 and P1, and adult rats. Whole cell lysates were prepared and subjected to Western blotting. β-Actin works as a loading control.
2) In vivoにおけるAQP5およびSp3の時空間的発現変化に関する検討

さらに、AQP5およびSp3の詳細な発現パターンを調べるために、胎児、新生児および成体ラットから肺を摘出し、凍結切片を作製し、免疫組織染色を行った。

その結果、胎生期16.5および18.5日目の肺において、AQP5の発現は確認されなかったが（Fig. 17A and B）、胎生期20.5日目以降の肺において、AQP5は、II型細胞マーカーABCA3陽性細胞以外の上皮細胞、すなわちI型細胞の細胞膜にその発現が認められた（Fig. 17C, D and E）。一方、胎生期16.5および18.5日目の肺において、Sp3は、上皮細胞および間質細胞の核に発現しており（Fig. 17F and G）、胎生期20.5日目になるとII型細胞（ABCA3陽性細胞）およびI型細胞（ABCA3陰性上皮細胞）を含む上皮細胞の核に主に発現していた（Fig. 17H and I）。さらに、出生後1日目および7週齢の肺において、Sp3の発現はII型細胞に認められ、I型細胞にはわずかしか発現していなかった（Fig. 17J and L, J and M）。

以上の結果より、出生後のI型細胞におけるAQP5の発現上昇に、I型細胞におけるSp3の発現低下が関与していることが分かった。一方、胎生期20.5日目肺において、I型細胞にAQP5およびSp3が発現していたことから、両分子の消長にはタイムギャップがあることが分かった。すなわち、AQP5が発現し始めるのにSp3の消失は必ずしも必須ではないことが示唆された。
Fig. 17. Spatial and temporal expression patterns of AQP5, ABCA3 and Sp3 in perinatal and adult rat lungs.

Cryostat sections (6 μm) of rat lungs were processed for immunohistochemistry using each antibody. (A–E) Fluorescent patterns of AQP5 (green) and ABCA3 (red); (F–J) Sp3 (green) and ABCA3 (red); (K) Sp3 (green) and T1α (red). (L, M) Phase contrast views of panel I and J, respectively. Arrow indicates alveolar type I cells. Arrowhead indicates alveolar type II cells. Scale bar: 20 μm.
第4項 AQP5の発現調節におけるDNAメチル化の関与に関する検討

これまで、肺胞上皮細胞におけるAQP5の発現は、転写因子Sp1により正に、Sp3により負に調節されており、I型細胞におけるAQP5の発現上昇には、リプレッサーSp3の発現低下が関与していることが分かった。

一方、転写因子のみならず、クロマチン構造も細胞選択的な遺伝子発現に貢献している。遺伝情報の発現調節に重要なクロマチン構造は、クロマチンを形成するヒストンのアセチル化、メチル化、リン酸化、さらにDNAのメチル化といったクロマチンへの可逆的な修飾により調節されている46,47。なかでも、DNAのメチル化は脊椎動物のゲノムを直接的に修飾する唯一の機構であり、分化後の組織特異的な遺伝子発現にもメチル化は重要であることが報告されている50,51。また、EMBOSS program CpGplot (www.hgmp.mrc.ac.uk/Software/EMBOSS/Apps/cpgplot.html) により、ラットAQP5プロモーターには、メチル化を受けうる5'-CpG-3'配列が高密度に存在する領域が含まれていることが分かった(Fig. 18)。従って、I型細胞特異的なAQP5遺伝子の発現にDNAのメチル化が関与している可能性が考えられるが、未だ調べられていない。

Fig. 18. Location of the CpG island at the rat AQP5 promoter.
The top portion of the figure presents the quantification of the CpG ratio (observed/expected). The estimated values for CpG (% observed/% expected) were plotted against the position in the analyzed sequence. The putative CpG Island is indicated by gray area. The bottom portion of the figure presents the distribution of each CpG dinucleotide of the AQP5 gene. The vertical lines indicate the position of each CpG site. SBEs are indicated by box.
1) NIH-3T3 および MLE-12 細胞における AQP5 遺伝子の発現

AQP5 の発現調節における DNA メチル化の関与について調べるために、MLE-12 細胞および NIH-3T3 細胞を用いた。Fig. 19A に示すように、AQP5 は MLE-12 細胞に高発現しており、NIH-3T3 細胞には発現していない。しかしながら、AQP5 プロモーター活性は、調べたどのコンストラクトにおいても NIH-3T3 細胞と MLE-12 細胞とでは、同程度であった（Fig. 19B）。このことより、NIH-3T3 細胞は、AQP5 遺伝子の発現に必要な転写因子などの基本的なメカニズムを備えていることが示唆された。それにも関わらず、NIH-3T3 細胞に AQP5 が発現していないこと、および人工的に作製したプロモーターDNA は、CpG メチル化を受けていないことを考えると、NIH-3T3 細胞における AQP5 の発現は、エピジェネティックな修飾、すなわち DNA メチル化により調節されている可能性が示唆された。

Fig. 19. Expression of AQP5 gene in NIH-3T3 and MLE-12 cells.
(A) Expression levels of AQP5 mRNA in NIH-3T3 and MLE-12 cells. Confluent NIH-3T3 and MLE-12 cells were harvested. Total RNA was prepared and used for semi-quantitative RT-PCR. PCR cycles: 24 cycles for AQP5 detection, 22 cycles for GAPDH. (B) AQP5 promoter activity in NIH-3T3 and MLE-12 cells. NIH-3T3 and MLE-12 cells were transiently transfected with the indicated AQP5 promoter constructs. Luciferase activity was then assessed after 48 h. Results represent the means ± SD of three independent experiments.
2) AQP5 の発現における脱メチル化剤の効果

AQP5 の発現が DNA メチル化による調節を受けているか検討するために、NIH-3T3 および MLE-12 細胞に、DNA メチルトランスフェラーゼの阻害剤である 5-azacytidine (5-AC) を処理することで DNA の脱メチル化を促進させ、semi-quantitative RT-PCR にて AQP5 mRNA、Western blotting にて AQP5 protein の発現量をそれぞれ調べた。

その結果、AQP5 隠性細胞である NIH-3T3 細胞において、10 および 50 μM の 5-AC 処理により AQP5 mRNA の発現が確認された（Fig. 20A）。また、Western blotting により、AQP5 protein の発現も同様に確認された（Fig. 20B）。一方、AQP5 高発現細胞である MLE-12 細胞において、NIH-3T3 細胞のような 5-AC の効果は認められなかった（Fig. 20C）。

これらの結果から、NIH-3T3 細胞において AQP5 の発現は DNA メチル化により調節されていることが明らかとなった。

Fig. 20. The effect of 5-AC on AQP5 expression.
(A) NIH-3T3 cells were treated with the indicated concentration of 5-AC for 5 days, and total RNA was subjected to semi-quantitative RT-PCR. PCR cycle: 33 cycles for AQP5 detection, 22 cycles for GAPDH.
(B) NIH-3T3 cells were treated with the indicated concentration of 5-AC for 5 days. Whole cell lysates were applied to SDS-PAGE followed by Western blotting with anti-AQP5 and anti-β-actin antibodies. β-Actin works as a loading control.
(C) MLE-12 cells were treated with the indicated concentration for 3 days, and total RNA was subjected to semi-quantitative RT-PCR. PCR cycle: 24 cycles for AQP5 detection, 22 cycles for GAPDH.
3) AQP5 プロモーター領域の DNA メチル化における脱メチル化剤の効果

次に、実際に、AQP5 プロモーター領域は、DNA メチル化を受けており、また 5-AC 処理により DNA メチル化レベルはどのように変化するのか検討するために、NIH-3T3 細胞に 5-AC を処理し、sodium bisulfite DNA sequencing にて、AQP5 プロモーター内 CpG の DNA メチル化レベルを調べた。

その結果、Fig. 21 に示すように、NIH-3T3 細胞において、AQP5 プロモーター領域の CpG は、全体的に 80～100% と、高度にメチル化されていた。一方、5-AC 処理した NIH-3T3 細胞においては 30～70% と、未処理に比べてメチル化レベルは著明に低かった。また、MLE-12 細胞におけるメチル化レベルは、0～40% と NIH-3T3 細胞に比べ著明に低かった。

これらの結果より、AQP5 プロモーター領域は、メチル化を受けていていることが分かった。また、AQP5 プロモーター領域の CpG のメチル化レベルは、AQP5 mRNA の発現と逆相関していることが明らかとなった。

![Fig. 21. The effect of 5-AC on DNA methylation status at the AQP5 promoter region.](image)

NIH-3T3 cells treated with 10 μM 5-AC for 5 days and MLE-12 cells were harvested to extract genomic DNA. Genomic DNA was modified with sodium bisulfite, PCR-amplified, and subsequently cloned and sequenced. The frequency of DNA methylation at each CpG site within the mouse AQP5 promoter (+185/+477 relative to the transcription start site (+1)) is shown.
4) Sp1/SBE 結合における脱メチル化剤の効果

第1項で AQP5 の基本転写には Sp1 が重要であることが示された。Sp1 の結合配列は、シトシンとグアニンに富んでおり、メチル化を受け得る。また、Sp1 の DNA 結合は、メチル化により阻害されるという報告もある。そこで、DNA メチル化レベルの変化は、Sp1 の AQP5 プロモーター領域内 SBE への結合に影響を与えるか否かについて、ChIP アッセイにより調べた。まず、MLE-12 細胞および5日間5-AC処理した NIH-3T3 細胞をそれぞれホルムアルデヒドで固定し、可溶化クロマチンを調製した。さらに抗 Sp1 抗体で免疫沈降し、Sp1 と共に沈降した DNA を鉱型として PCR に用いた。本実験のプライマーとしては、メチル化レベルに変化のある領域を増幅するものを使用した。

その結果、抗 Sp1 抗体で免疫沈降した DNA を鉱型に用いた PCR において、タンパク質と DNA の結合を示す適切なサイズ（336 bp）のバンドが検出された。NIH-3T3 細胞において、DMSO 処理では認められなかった Sp1 の AQP5 プロモーター-DNA への結合が 5-AC 処理により認められた。また、MLE-12 細胞において、Sp1 は AQP5 プロモーター-DNA に結合していた (Fig. 22A)。この時、それぞれの細胞において Sp1 protein の発現量に大きな違いは認められないことが、Western blotting りにより確認された (Fig. 22B)。

これらの結果より、AQP5 プロモーター-DNA が高メチル化状態の時は、Sp1 の SBE への結合は阻害されていることが明らかとなった。

![Fig. 22. The effect of 5-AC on DNA-binding of Sp1 at the AQP5 promoter region.](image)

(A) NIH-3T3 cells were treated with 10 μM 5-AC for 5 days. The soluble chromatin extracts were immunoprecipitated with anti-Sp1 antibody or control IgG, and then subjected to PCR with primer pairs spanning +99/+434 of the mouse AQP5 5'-flanking region. “Input” indicates that the crude chromatin extracts prior to immunoprecipitation were also analyzed. PCR cycle: 45 cycles. (B) Expression levels of Sp1 in NIH-3T3 and MLE-12 cells. Nuclear extracts were applied to SDS-PAGE followed by Western blotting with anti-Sp1 antibody. As a loading control, the gel was staining with Coomassie Brilliant Blue (CBB).
5) AQP5 プロモーター活性における DNA メチル化の影響

ここまでで、AQP5 プロモーターDNA が高度にメチル化を受けていている時は、AQP5 の転写促進因子である Sp1 の SBE への結合は阻害されることが分かった。そこで、AQP5 プロモーターの DNA メチル化は、プロモーター活性に影響するか否か調べるために、以下の実験を行った。まず、AQP5 プロモーター（¬160/+69）を DNA メチラーゼでメチル化した。DNA メチラーゼとして、部分的メチラーゼ Hpa II (CCpGG 配列を認識しメチル化) および完全メチラーゼ Sss I (CpG 配列を認識しメチル化) を用いた。メチル化された DNA 断片をルシフェラーゼプラスミドに組み込み、MLE-12 細胞に遺伝子導入し、プロモーター活性を測定した。

その結果、部分的メチル化により、AQP5 プロモーター活性は、偽メチル化の活性に対し約 85%と著明に減弱した。また、完全メチル化により、AQP5 プロモーター活性は完全に抑制された（Fig. 23）。

これにより、AQP5 プロモーターDNA のメチル化は、プロモーター活性を抑制し、その抑制効果はメチル化密度に依存していることが明らかとなった。

以上のことより、AQP5 プロモーター領域の CpG メチル化は、Sp1 の SBE への結合を阻害し、その結果 AQP5 遗伝子の転写を抑制することが分かった。また、NIH-3T3 細胞において AQP5 は発現しておらず、一方で MLE-12 細胞において高発現しているという AQP5 の細胞種選択性の発現には、AQP5 プロモーターDNA のメチル化が関与していることが示唆された。
Fig. 23. Repression of AQP5 promoter activity by CpG methylation in MLE-12 cells.

The luciferase constructs (pGL4.17 and AQP5 promoter (-160/+69)/pGL4.17) were mock-methylated (Mock) or *in vitro* methylated with *Hpa* II or *Sss I* methylase and transfected into MLE-12 cells. Luciferase activity was then assessed. Results represent the means ± SD of three independent experiments.
6）II型細胞の初代培養系におけるDNAメチル化レベルの変化

ここまでで、NIH-3T3細胞ではAQP5プロモーターのDNAメチル化は、Sp1のSBEへの結合を阻害し、AQP5の発現を抑制していることが示され、AQP5の細胞種選択的な発現にも関与していることが示唆された。さらに、AQP5の細胞種選択的な発現におけるメチル化の役割を調べるために、II型細胞の長期培養系を用いた。前述のとおり、AQP5mRNAは、II型細胞の培養初期では発現していないが、培養5日目では発現誘導される。この時のAQP5プロモーター領域のCpGメチル化レベルをsodiumbisulfiteDNAsequencingにて調べた。

その結果、単離直後のII型細胞におけるラットAQP5プロモーターのDNAメチル化レベルは、20〜50%であった。一方、培養5日目におけるラットAQP5プロモーターのメチル化レベルは、0〜25%で、単離直後のメチル化レベルより全体的に低かった（Fig.24）。特にAQP5プロモーター活性に重要なSBE周辺のCpG（CpGsite:8,16,19,20and21）における培養5日目のメチル化レベルは、それぞれ単離直後50%に対し25%，40%に対し8.3%，40%に対し8.3%，30%に対し16.7%，30%に対し8.3%と低下していた（Fig.24）。

このことより、II型細胞の初代培養に伴うAQP5の発現誘導には、AQP5プロモーター領域のDNAメチル化レベルが低下することが関与していることが示された。

40
Fig. 24. Methylation status at the AQP5 promoter region on Day 0 and 5.

Upper panel: The sequence of the rat AQP5 core promoter. The potential CpG sites for methylation are indicated with numbered. The three putative SBEs are marked by box. *Lower panel:* Genomic DNA from cells on Day 0 and 5 was modified with sodium bisulfite, PCR-amplified, and subsequently cloned and sequenced. The frequency of methylation at each CpG site in rat AQP5 promoter region is shown.
7）II型細胞の初代培養におけるSp1/SBE経合の変化

II型細胞の初代培養に伴いAQP5プロモーター領域のDNAメチル化レベルが低下することと分かった。そこで、本培養系におけるSp1のAQP5プロモーター領域内SBEへの経合を検討するために、ChIPアッセイを行った。まず、ラットから単離後1および5日間培養したII型細胞をそれぞれホルムアルデヒドで固定し、可溶化クロマチンを調製した。さらに抗Sp1抗体で免疫沈殿し、Sp1と共に沈降したDNAを鋳型としてPCRに用いた。プライマーとして、メチル化レベルに変化のあった領域を増幅するものを使用した。

その結果、Sp1のAQP5プロモーターDNAへの経合量は、培養1日目よりも5日目の方が多かった（Fig. 25A）。この時、培養1および5日目においてSp1 proteinの発現量に大きな違いは認められないことが、Western blottingにより確認された（Fig. 25B）。

これらの結果より、II型細胞初代培養に伴うAQP5プロモーター領域のDNAメチル化レベルの低下は、Sp1のDNA結合力の増加につながっており、このことがAQP5の発現誘導に関与していることが示唆された。

以上より、AQP5陰性細胞、すなわちNIH-3T3細胞およびII型細胞において、AQP5プロモーターは高メチル化状態であり、一方AQP5発現細胞、すなわちMLE-12細胞およびI型細胞様細胞において、低メチル化状態であった。また、AQP5プロモーター領域の高DNAメチル化状態は、Sp1のDNA結合を阻害することでAQP5の転写を抑制し、5-AC処理による脱メチル化は、AQP5が発現し始めるのに十分であった。AQP5発現促進因子Sp1は、種々の細胞にubiquitousに発現していることを考えると、Sp1のDNA結合を調節するDNAメチル化は、AQP5の細胞種選択的な発現に重要なメカニズムであることが考えられた。
Fig. 25. DNA-binding of Sp1 at the AQP5 promoter region on Day 0 and 5.
(A) The soluble chromatin fractions extracted from cells on Day 0 and 5 were immunoprecipitated with anti–Sp1 antibody or control IgG, and then subjected to PCR with primer pairs spanning −268/+69 of the rat AQP5 5′-flanking region. “Input” indicates that the crude chromatin extracts prior to immunoprecipitation were also analyzed. PCR cycle: 45 cycles. (B) Expression levels of Sp1 on Day 0 and 5. Nuclear extracts from cells on Day 0 and 5 were applied to SDS–PAGE followed by Western blotting with anti–Sp1 antibody. As a loading control, the gel was staining with CBB.
第4節 考察

第1項 AQP5の発現調節におけるSp1およびSp3の役割

本章では、まず、AQP5のプロモーター活性には上流側（−1253/−1245）および下流側（−74/−66）の2カ所のSBEが重要であることを明らかにした。次に、SBEに結合する転写因子Sp1およびSp3を同定した。Sp1は上流側および下流側SBEを介してAQP5の発現を促進し、一方Sp3は上流側SBEでSp1と競合することによりAQP5の発現を抑制することが明らかになった。また、Sp1/Sp3発現量のパラメータは、AQP5の発現を調節し得ることが示唆された（Fig. 26）。以下にAQP5の発現調節におけるSp1およびSp3について考察する。

Fig. 26. Regulation of AQP5 expression by Sp1 and Sp3.
Sp1 positively regulates AQP5 expression through the distal (−1253/−1245) and proximal (−74/−66) SBEs. On the other hand, Sp3 negatively regulates AQP5 expression by competing Sp1 DNA-binding at the distal SBE.

1. AQP5の発現調節におけるSBEの重要性

今回、クローニングしたラットAQP5のプロモーター領域には、転写開始部位の上流約30bpの位置にTATA-like motifが存在し、その上流には極めてGC含量の高い領域が広がっていた（Fig. 2）。また、Sp1、AP-1、TTF-1（NKX2.1）、Foxa2（HNF-3β）、HIF-1およびGATA因子、さらにはNF-κBなどの転写因子結合部位と考えられる配列が見出された（Fig. 2）。Sp1およびAP-1は、多くの遺伝子の転写活性に関与していると知られる転写因子である52,53。また、TTF-1（NKX2.1）、Foxa2（HNF-3β）およびGATA因子は、Clara cell secretory protein（CCSP）、SP-C、T1αなど肺上皮細胞特異的遺伝子の発現調節に関与することが報告されている54,55。さらに、NF-κBは、多くの炎症関連因子の発現調節を担っている56。従って、これらの転写調節因子が、AQP5の発現調節を考える上で重要であると推定された。本章では、これらの転写因子結合配列の中で、プロモーター解析の結果、最も著
明な影響を生じた Sp1/Sp3 binding element (SBE) に注目し、その機能的役割について追求した。

下流側に位置する SBE-C (-74/-66) の欠損および変異は、AQP5 プロモーター活性を著明に減少させた (Fig. 3 and 4B)。SBE-C (-74/-66) は、極めて GC 含量の高い領域に存在しており、最小限のプロモーター活性に必要であった。基本転写に必要な TATA-like motif だけでは、最小限のプロモーター活性を示さなかったことから、AQP5 の基本転写活性は、TATA 配列非依存的な機構により調節されていると考えられ、特に下流側に位置する SBE-C (-74/-66) の重要性が示唆された。この下流の領域は、マウス、ラットおよびヒトの AQP5 プロモーター間で相同性が非常に高いことからも、種を越えて AQP5 の転写に重要な部分であると考えられる。一方、上流側に位置する SBE-A (-1253/-1245) の欠損および変異は、完全ではないものの著明にプロモーター活性を減少させた (Fig. 3 and 4B)。従って、上流側の SBE-A (-1253/-1245) はエンハンサーとして、下流側の SBE-C (-74/-66) は基本転写に必要なプロモーターとして機能しており、AQP5 の転写活性における両 SBE の重要性が示唆された。

AQP5 プロモーター上には、SBE を含む領域以外に、プロモーター活性を促進または抑制する領域が明らかとなった。-764/-656 および-505/-376 の両領域の欠損は、プロモーター活性を減少させたことから、SBE 以外にも両領域が、転写促進部位を含んでいると考えられる (Fig. 3)。一方、-1239/-954 および-655/-625 の欠損はプロモーター活性を増加させたことから、両領域は転写抑制に関わっていると考えられる (Fig. 3)。これらの領域は、AQP5 の発現調節機構を解明する上で重要な部分であると考えられるが、これらの領域の活性に寄与している転写因子結合部位の同定には至っておらず、さらに詳細に AQP5 プロモーター欠損体の解析を行う必要がある。

2. AQP5 の発現調節における Sp1 の役割

SBE に結合することが確認された転写因子 Sp1 および Sp3 について、AQP5 の発現調節におけるそれぞれの役割について検討を行った。その結果、肺胞上皮細胞における AQP5 遺伝子の発現は、Sp1 および Sp3 により調節されており、Sp1 および Sp3 による発現調節は異なることを明らかにした。以下に、Sp1 について考察する。

Sp1 は、多数の他のハウスキーピング遺伝子や組織特異的遺伝子同様、AQP5 の発現を促進した。先ず、ルシフェラーゼアセサイにおいて、Sp1 の過剰発現は AQP5 プロモーターを活性化させた (Fig. 6A)。また、Sp1 阻害剤 mithramycin A は、AQP5 のプロモーター活性を阻害し、MLE-12 細胞および培養 II 型細胞における内因性 AQP5 mRNA の発現を抑制した (Fig. 6B, 6C and 13)。さらに、Sp1 siRNA による Sp1 の knockdown は、内因性 AQP5 mRNA の発現を減少させた (Fig. 6D)。従って、肺胞上皮細胞において、Sp1 は AQP5 遺伝
子発現のために重要な促進因子であることが示された。また、AQP5 プロモーター上の SBE-A（-1253/-1245）および SBE-C（-74/-66）の欠損および変異体は、プロモーター活性が著明に低かったこと（Fig. 3 and 4B）、SBE-A および C に Sp1 は結合することから（Fig. 5A and 5B）、Sp1 は、SBE-A および C、2 カ所の SBE を介して AQP5 を活性化していると考えられる。

3. AQP5 の発現調節における Sp3 の役割

Sp1 による促進作用とは逆に、Sp3 は AQP5 遺伝子の発現を抑制的に調節した。Sp3 の過剰発現は、AQP5 のプロモーター活性を阻害し（Fig. 7A）、MLE-12 細胞および培養 II 型細胞における内因性 AQP5 mRNA の発現を抑制した（Fig. 7C and 14A）。転写促進因子 Sp1 とは異なり、Sp3 は、プロモーター領域の DNA 配列または細胞種に依存して、遺伝子発現を促進したり抑制したりする。Sp3 による抑制作用は、kinase domain receptor (KDR/flk-1), calmodulin や alcohol dehydrogenase 5/formaldehyde dehydrogenase (ADH/FDH) 等、いくつかの遺伝子において報告されている 67-72。これらの遺伝子の発現調節において、Sp3 は Sp1 と同様に SBE に結合し、Sp1 依存的なプロモーター活性を競合的に阻害する。本研究において、Sp3 は、Sp1 により誘導された AQP5 プロモーター活性をその発現量依存的に抑制し（Fig. 9）、SBE-A の欠損しているプロモーターに対して、Sp3 の抑制作用は認められなかった（Fig. 8）。また、EMSA により SBE-A（-1253/-1245）には Sp1 および Sp3 が結合し、一方 SBE-C（-74/-66）には、主に Sp1 が結合することが示された（Fig. 5）。さらに、II 型細胞の初代培養系の ChIP assay において、Day 5 における Sp1 の SBE-A への結合量は Day 1 に比べ増加しており、一方で Day 5 における Sp3 の結合はあまり見られなかった（Fig. 12）。従って、Sp3 は、SBE-A において Sp1 の結合を競合的に阻害し、Sp1 による AQP5 プロモーターの活性化を阻害すると考えられる。

4. AQP5 の発現調節における Sp1/Sp3 割合の役割

II 型細胞の初代培養の間、Sp1 の発現量はほとんど変化しないのに対して、Sp3 の発現量は減少した（Fig. 11）。これに伴って、Sp3 の DNA 結合量は減少し、Sp1 の DNA 結合量は増加した（Fig. 12）。この Sp3 の発現量および DNA 結合量の低下は、AQP5 mRNA の増加と相関していた（Fig. 10C）。また、Sp3 は、Sp1 により誘導された AQP5 プロモーター活性をその発現量依存的に抑制した（Fig. 9）。さらに、II 型細胞培養による AQP5 mRNA の発現上昇は、Sp3 の過剰発現により抑制された（Fig. 14A）。従って、Sp1 と Sp3 の発現量の割合は、AQP5 遺伝子の発現調節において、重要な意味を持つことが示唆される。また、単離・培養した II 型細胞に加え、成体ラットの肺においても、Sp3 は II 型細胞に主に発現しており、I 型細胞には発現していないことが示された（Fig. 17E, 17J and 17M）。このこと
より，Sp1 と Sp3 の発現量の割合は，生理学的にも AQP5 遺伝子の I 型細胞特異的な発現に重要であると考えられる。

第 2 項 AQP5 の発現調節における CpG メチル化の役割

AQP5 遺伝子の発現調節における CpG メチル化の役割を検討した結果，AQP5 プロモーター-DNA がメチル化されると，Sp1 の SBE への結合が阻害され，AQP5 の転写が抑制されることが明らかとなった（Fig. 27）．以下に AQP5 の発現調節における DNA メチル化について考察する。

Fig. 27. Regulation of AQP5 expression by CpG methylation.
In AQP5 negative cells, CpG methylation at AQP5 promoter results in the inhibition in Sp1 DNA-binding, leading to the suppression of AQP5 transcription. In AQP5 positive cells, an increase in Sp1 DNA-binding by hypo-methylation activates AQP5 transcription. HDAC: histone deacetylase. MBD: methyl-CpG-binding domain protein.

AQP5 遺伝子の発現調節における CpG メチル化の役割を検討した。まず，NIH-3T3 細胞および単離直後の II 型細胞において，AQP5 プロモーター領域は高度にメチル化されていた（Fig. 21 and 24）．これは，これらの細胞において AQP5 遺伝子の発現が抑制されていることと一致した（Fig. 19A and 10C）．一方，AQP5 を高発現している MLE-12 細胞および 5 日間培養後の II 型細胞において，AQP5 プロモーター領域の DNA メチル化レベルは低かった（Fig. 21 and 24）．また，NIH-3T3 細胞における AQP5 遺伝子の発現抑制は，DNA 脱メチル化剤である 5-AC により解除された（Fig. 20A and 20B）．さらに，in vitro でメチル化した AQP5 プロモーター-DNA は，MLE-12 細胞においてその活性が著明に抑制された（Fig. 23）．従って，AQP5 プロモーターの CpG メチル化は，AQP5 の転写を抑制することが明ら
かとなった。

AQP5 プロモーター上で DNA メチル化を受ける領域は、AQP5 プロモーター活性に重要
な SBE を含んでいる。そこで、AQP5 プロモーターの DNA メチル化が Sp1 の DNA 結合に
影響を及ぼすのか検討した結果、AQP5 プロモーターが DNA メチル化を受けると Sp1 の SBE
への結合が阻害されることが明らかとなった。先ず、NIH-3T3 細胞に 5-AC を処理した結
果、AQP5 プロモーター領域の DNA メチル化レベルが減少し、その部位への Sp1 の結合量
が増加した (Fig. 21 and 22)。また、5 日間培養後の II 型細胞において、単離直後の II 型細
胞に比べ AQP5 プロモーター領域の DNA メチル化レベルが低く、その部位への Sp1 の結合
量が増加していた (Fig. 24 and 25)。従って、AQP5 プロモーター領域内の SBE もしくは
その近辺が DNA メチル化を受けると、AQP5 の発現促進因子である Sp1 の DNA 結合が阻
害され、結果として Sp1 による AQP5 の発現促進が抑制されることが示唆された。

DNA メチル化による遺伝子発現の抑制は、p21\(^{\text{Waf1/Cip1}}\)，aryl hydrocarbon receptor
や monoamine oxidase B 等、多数の遺伝子において報告されている。これらの遺伝
子の発現は、プロモーター領域の DNA メチル化により抑制される。DNA メチ
ル化により Sp1 の DNA 結合が直接阻害されたことによるものである。一方、DNA メチル
化による遺伝子の発現抑制機構として、別のメカニズムが提唱されている (Fig. 28)。MeCP1
や MBD2 のようなメチル化 DNA 特異的抑制因子が、メチル化領域に結合し、histone
deacetylase (HDAC) や chromosome remodeling factor をリクルートし、転写を抑制す
るという機構である。しかし、我々の結果は、DNA メチル化が Sp1 の DNA 結
合の直接阻害で説明し得ることから、DNA メチル化による AQP5 遺伝子の発現抑制に MeCP1
や MBD2 が関与している可能性は少ないと思われるが、今後検討する必要はあろう。

![Fig. 28. The putative mechanisms of CpG methylation–mediated gene repression.](image)

(A) DNA methylation directly inhibits transcription factors (TFs), (B) DNA methylation indirectly inhibits TFs through recruiting chromosome remodeling factors such as MBD or HDAC.
第3項 AQP5の細胞種選択的な発現調節機構

肺胞領域において, AQP5 は, I 型細胞の内腔側に発現が限局しており, II 型細胞, マクロファージおよびその他の間質性の細胞には存在しない 16-18). しかしながら, AQP5 の I 型細胞選択的な発現調節機構は未だ解明されていない。本章では, AQP5 の発現促進因子として Sp1 を見出した。Sp1 は, 様々な細胞種に ubiquitous に発現している転写因子である 75). そのため, その活性を調節する分子メカニズムが AQP5 の I 型細胞選択的な発現調節に重要であると考えられる。本章では, AQP5 の I 型細胞選択的な発現調節機構として, I 型細胞における抑制因子 Sp3 の発現量の低下および AQP5 プロモーターの DNA メチル化レベルの低下, それに伴う抑制因子 Sp1 の DNA 結合能の促進というメカニズムを提唱した (Fig. 29). 以下に, Sp1 活性調節因子としての Sp3 および DNA メチル化について細胞種選択的な発現調節に焦点を当て, 考察する。

Fig. 29. Schematic model of alveolar type I cell-specific expression of the AQP5 gene.
In alveolar type II cells, DNA-binding of Sp3 at the distal SBE (−1253/−1245) and CpG methylation at the proximal SBE (−74/−66) cause the inhibition of Sp1 DNA-binding, leading to the suppression of AQP5 transcription. In alveolar type I cells, a loss of Sp3 and the decreased methylation level result in Sp1 DNA-binding to SBEs, followed by the activation of AQP5 transcription. It is assumed that the decreased methylation level may switch on AQP5 expression whereas a loss of Sp3 may be involved in the increase in AQP5 expression.
1. AQP5 の細胞種選択的な発現調節における Sp3 の役割

AQP5 の転写抑制因子である Sp3 は、単離・培養初期の II 型細胞に発現しており、培養後期の I 型細胞には発現していなかった (Fig. 11)。また、成体ラットの肺においても Sp3 は、II 型細胞の核に発現しており、I 型細胞にはほとんど発現が認められなかった (Fig. 17E, 17J and 17M)。従って、成体の I 型細胞において Sp3 が発現していないことが、I 型細胞における AQP5 の発現亢進に寄与していると考えられる。

Sp1 および Sp3 は、T1αやα-ENaC2 など他の I 型細胞特異的遺伝子の発現も調節していると報告されている ⑵ 〜 ⑶。しかしながら、Sp1 および Sp3 によるこれら遺伝子の発現調節は、AQP5 とは異なっていると考えられる。例えば、α-ENaC2 プロモーターには、SBE が認められ、肺胞上皮細胞において Sp1 および Sp3 どちらによっても発現が亢進することが報告されている ⑷。T1αにおいても SBE の重要性が示されている。すなわち、T1αプロモーター上の SBE への変異挿入は、プロモーター活性を減弱させ、プロモーターの hyperoxia 感受性を消失させる ⑸。また、本研究において、初代培養 II 型細胞への Sp3 過剰発現は、AQP5 とは異なり T1αの発現にあまり影響を及ぼさなかった (Fig. 15C)。従って、I 型細胞特異的遺伝子のなかで、唯一 AQP5 のみが Sp3 により発現抑制されると考えられる。

II 型細胞の初代培養系および成体ラット肺の I 型細胞における Sp3 の発現減少のメカニズムは、現時点では不明である。しかしながら、神経芽細胞腫株 Neuro2A 細胞に 5-AC を処理すると、Sp3 の発現が減少することが報告されている ⑹。また、予備実験ではあるが、NIH-3T3 細胞に 5-AC を処理すると AQP5 の発現上昇に相関して Sp3 の発現が減少することを確認している。従って、Sp3 の発現減少のメカニズムとして DNA メチル化レベルの低下が考えられるが、更なる検討が必要であろう。

2. AQP5 の細胞種選択的な発現調節における DNA メチル化の役割

AQP5 を発現していない線維芽細胞 NIH-3T3 細胞や II 型細胞において、AQP5 の基本転写に必要なプロモーター領域は高度に DNA メチル化されており (Fig. 21 and 24)。脱メチル化剤による DNA メチル化レベルの低下は AQP5 が発現するのに十分であった (Fig. 20A and 20B)。従って、DNA の脱メチル化は AQP5 が発現し始めるためのスイッチとなってい ると考えられ、DNA メチル化が AQP5 の細胞種選択的な発現に寄与していることは間違いない。今後、胎児期や肺胞修復期の I 型細胞における AQP5 の発現開始に DNA の脱メチル 化が関与しているのか更なる検討が必要である。

I 型細胞特異的遺伝子である T1αもまた AQP5 と同様に DNA メチル化と Sp1 により発現調節されている ⑹。T1αプロモーター上の SBE での DNA メチル化は、Sp1 の結合を阻害し、T1αの発現を抑制する ⑹。また、SBE での DNA メチル化レベルは、T1α発現細
胞・組織で低く、非発現細胞・組織で高いことが報告されている**。**Sp3 は Tlαの発現に関与していないことを示したが、一方で DNA メチル化は I 型細胞特異的遺伝子に共通のメカニズムであると考えられる。従って、DNA メチル化および Sp1 は、I 型細胞を定義づける分子メカニズムの1つではないかと考えられる。

第4項 II型細胞の分化について

肺胞が傷害を受けると、刺激に感受性のあるI型細胞は基底膜より脱落し、比較的刺激に対して耐性のあるII型細胞が生き残る。一方、修復期に入るとII型細胞が劇的に増殖し始め、一部の細胞がI型細胞に分化することで、肺胞を再構築する**。**本研究で用いたII型細胞の初代培養系は、in vivo で起こる肺胞修復過程に極めて類似している。すなわち、ラットから単離・精製したII型細胞は、培養初期に急激に増殖し、上皮細胞単一層を形成後静止期に入り、I型細胞に極めて近い形態および生化学的特徴を有する細胞へと自発的に分化する。従って、本培養系は、in vivo の肺胞修復過程に観察されるI型細胞への分化調節機構解明のためのよいin vitro モデルである。

I型細胞の分化マーカーAQP5 のI型細胞選択的な発現調節機構は、I型細胞への分化調節機構と協調している可能性が考えられる。従って、AQP5 の発現調節機構に関する研究から見出された調節因子Sp1, Sp3 およびDNA メチル化について分化調節の観点から考察する。

1. II 型細胞の分化における Sp1

単離・培養したII型細胞に Sp1 阻害剤mithramycin A を処理することで、分化に伴い誘導されるI型細胞特異的遺伝子AQP5 およびTlαの発現は抑制され、逆に、II型細胞特異的遺伝子SP-A およびSP-C の発現減少は抑制された(Fig. 15A)。さらにII型細胞の肺サーキャクタント分泌能を調べたが、mithramycin A は、長期培養によるサーキャクタント分泌能の低下も有意に抑制した(Fig. 15B)。これらの結果は、II型細胞からI型細胞への分化がmithramycin A により一部抑制されたことを示しており、Sp1 がAQP5 の発現のみならず、この分化の調節因子としても重要な役割を果たしていると考えられる。

Sp1 は、様々な細胞種にubiquitous に発現している転写因子である**。**そのため、一見、非特異的と思われるが、Sp1の活性は、空間的・時間的に量および質を変化させ、さらには様々な転写因子および調節因子と結合することで高度に調節されている**。**本研究において、Sp1 のDNA 結合能調節機構としてSp3 およびDNA メチル化を見出した。また、Sp1のDNA 結合能はリン酸化などの修飾によっても調節されることが知られている**。予
備実験ではあるが，本培養系において Sp1 はリン酸化され，DNA 結合能が上昇することを示した。従って，本培養系における Sp1 活性は，Sp3，DNA メチル化，リン酸化などの修飾によって複雑に調節されていると考えられる。今後，この調節機構を解明することができれば，Sp1 を薬理学的に調節することで，Ⅱ型細胞からⅠ型細胞への分化を調節できるのではないかと思われる。

2. Ⅱ型細胞の分化における Sp3

単離・培養したⅡ型細胞に Sp3 を過剰発現させることで，分化に伴い誘導される AQP5 の発現は抑制されたが，一方で，他のⅠ型細胞特異的遺伝子およびⅡ型細胞特異的遺伝子の発現は，Sp3 の影響を受けなかった（Fig. 15C）。また，周産期ラットの肺の解析により，未成熟なⅡ型細胞およびⅠ型細胞において Sp3 の発現が確認された（Fig. 17C，17H and 17K）。従って，Sp3 の発現減少は，成熟したⅠ型細胞における AQP5 の発現亢進に寄与しているものの，Ⅱ型細胞のⅠ型細胞への分化には関与していないと考えられる。

一方，Sp3 knockout mice は，呼吸不全のため出生直後に致死することが報告されている。このマウスの肺は，気管支など上気道系は正常であること，野生型に比べ肺内腔体積が小さいこと，SP-C などのⅡ型細胞特異的遺伝子の発現量に変化はみられなかったが，Ⅱ型細胞が未成熟で未梢気道に異常がみられることは報告されている。従って，発達過程において Sp3 は肺胞形成に重要な因子で，Ⅱ型細胞の成熟に寄与している可能性が示唆される。

3. Ⅱ型細胞の分化における DNA メチル化

単離直後のⅡ型細胞における AQP5 プロモーター領域の DNA メチル化レベルは，5 日間培養することで減少していった（Fig. 24）。DNA 脱メチル化が，AQP5 遺伝子上だけでなく，すべてのⅠ型細胞特異的遺伝子上または核内全体で起こっているのか，またⅠ型細胞に分化するための原因となっているかは分かった結果なのかは，現時点では分からない。しかしながら，AQP5 だけでなく T1αプロモーターでも同様に脱メチル化が起こっていることを考えると，Ⅰ型細胞を特徴づける少なくとも一要因になっているのではないかと示唆される。

本培養系における脱メチル化のメカニズムは明らかではないが，Ⅱ型細胞がⅠ型細胞に分化するためにはまず細胞増殖が必要であることから，増殖依存的な脱メチル化が推定され，今後検討が必要であろう。
第 5 節 小括

本章では、I 型細胞選択的な AQP5 遺伝子の発現調節機構の解明を目的として、種々の検討を行った。得られた知見を以下に要約する。

1. 肺胞上皮細胞において、AQP5 プロモーター活性には上流側 (−1253/−1245) および下流側 (−74/−66) に位置する 2 つの Sp1/Sp3 binding element が重要であることが明らかとなった。

2. 肺胞上皮細胞において、Sp1 は AQP5 の発現を促進し、Sp3 は抑制することが明らかとなった。また、Sp1/Sp3 発現量のバランスにより、AQP5 の発現は調節されることが分かった。

3. AQP5 プロモーターの DNA メチル化は、Sp1 の DNA 結合を阻害することで、AQP5 の発現を抑制することが明らかとなった。

以上の知見をもとに、I 型細胞における AQP5 の発現は、Sp3 の発現減少および DNA メチル化レベルの低下、それらに付随した Sp1 による転写の活性化により調節されていることが示された。
第3章 肺胞上皮細胞におけるAQP5発現に対するレチノイノ酸の影響

第1節 背景

ARDS/ALIやIPFなどで多くの呼吸器疾患は、炎症を主症状としており、I型細胞の水分代謝調節およびガス交換機能が重度に損なわれた状態を呈する。肺へのアデノウィルス感染29,30、気道からのlipopolysaccharide（LPS）注入31、ブレオマイシン注入32、Staphylococcus aureus注入33やphospholipase A2注入34などにより作製された実験的動物モデルの肺では、好中球を主体とした炎症反応の結果、血管透過性亢進型肺水腫、ガス交換能低下による低酸素血症を引き起こすが、これらの炎症部位においてAQP5の発現量が低下していることが示されている。また、AQP5欠損マウスの75%は出生時致死すること35,36、生き残った25%では肺胞腔-血管間の水分透過性が野生型に比べ著明に減少することが報告されている37,38。さらに、肺胞での水分クリアランスはARDS/ALIの予後を悪化させるとの報告もある39。従って、AQP5は肺胞における水分代謝など肺機能に重要なタンパク質で、炎症反応などによりAQP5の発現量が減少することは、肺水腫などI型細胞の機能異常を伴う種々の呼吸器疾患の病態生理に密接に関与していると考えられる。そのため、AQP5の発現量を薬理学的に調節できれば、炎症領域における水分代謝やガス交換など肺機能を改善できるのではないかと考えられる。

ビタミンAやその代謝産物であるall-trans retinoic acid（atRA）など、レチノイドは、肺の発達・成熟、恒常性維持、修復において重要な役割を担っている87,88。レチノイノ酸やその受容体は、胎児肺に高レベルで存在しているが、出生直後から急激にその発現は減少する89,90。一方、肺の細胞が、傷害を受けたり未成熟であったりすると、再び発現亢進することが知られている。また、dexamethasone投与による気腫病変や酸素吸入による肺傷害など動物モデルにおける炎症病変をレチノイノ酸は緩和することが報告されている91-93。さらに、レチノイノ酸は、肺胞上皮細胞の増殖を促進すること94、surfactant proteinやmucinなど様々な遺伝子の発現を調節することが報告されている95,96。加えて、ビタミンA欠乏により、粘稠性気道液が増加し、気道液および細菌のクリアランス能が低下することが報告されている97,98。従って、ビタミンAは、肺の修復や気道液の恒常性を維持するために重要であると示唆される。
第2節 目的

本章では、肺におけるAQP5の発現を薬理学的に調節することを目的として、以下の検討を行った。

1. 肺胞上皮細胞においてatRAは、AQP5の発現量を調節するか？
2. その調節機構は？
第3節 実験成績

1) AQP5 protein の発現に対する atRA の効果

肺胞上皮細胞において, atRA は AQP5 遺伝子の発現に影響を及ぼすかを検討するために, MLE-12 細胞に 10 μM atRA を 0, 6, 12, 24 および 48 時間処理し, AQP5 protein の発現量を Western blotting にて調べた。その結果, atRA 処理後 12, 24 および 48 時間で, AQP5 protein の発現上昇が確認された (Fig. 30A)。

また, atRA の用量依存性について調べるために, MLE-12 細胞に 0.01, 0.1, 1 および 10 μM の atRA を 24 時間処理し, AQP5 protein の発現量を Western blotting にて調べた。その結果, Fig. 30B に示すように atRA は, 用量依存的に AQP5 protein の発現量を亢進した。atRA による AQP5 protein の発現亢進は, コントロールの約 2 倍であった。

これらの結果より, 肺胞上皮細胞において, atRA は AQP5 protein の発現量を上昇させることができ明らかとなった。
Fig. 30. The effect of atRA on the expression of AQP5 protein.
(A) MLE-12 cells were incubated with 10 μM atRA for 0, 6, 12, 24, or 48 h. Twenty-five micrograms of whole cell lysates was applied to SDS-PAGE, followed by Western blotting with anti-AQP5 and anti-β-actin antibodies. β-Actin functions as a loading control. The membrane fraction from rat salivary gland was used as a positive control (P). (B) Cells were incubated with 0.01, 0.1, 1, or 10 μM atRA for 24 h and the levels of AQP5 protein were examined by Western blotting. The results are representative of two independent experiments.
2）細胞膜水分透過性に対する atRA の効果

AQP 類は、細胞膜上に発現し、浸透圧勾配に従った水分の輸送を促進させるタンパク質である。そこで、atRA による AQP5 protein の発現誘導は、細胞膜の水透過性に影響を与えるか否か検討するために、MLE-12 細胞に 10 µM atRA を 24 時間処理し、stopped-flow 法にて細胞膜の水分透過性を調べた。Stopped-flow 法は、細胞を低または高浸透圧下に曝すことで起きる細胞体積の膨張または収縮を、細胞に励起光を当てたときの 90°方向散乱光強度として、経時的にモニターシュ方法である。コントロールおよび atRA 処理細胞における低浸透圧に対する典型的な反応を、Fig. 31A に示している。また、本実験において、単位時間当りの 90°方向散乱光強度の変化は、細胞膜水分透過性を表している。Fig. 31B に示すように atRA 処理細胞における細胞膜水分透過性は、コントロールに比べ有意に上昇した。

このことから、atRA による AQP5 の発現亢進は、細胞膜水分透過性の亢進につながっていることが示された。

Fig. 31. The effect of atRA on plasma membrane water permeability. MLE-12 cells were treated with 10 µM atRA for 24 h, and harvested. Water permeability was measured. (A) Ninety-degree scattered light intensity was monitored at a wavelength of 530 nm. The trace bar indicates 2 s. (B) The ratio of scattered light intensity per second was calculated from 7 different experiments. Each bar represents the means ± SE. *p<0.01 vs. the vehicle-treated control.
3）AQP5 mRNA の発現に対する atRA の効果

ここまでで, atRA は, AQP5 protein の発現量を上昇させ, その結果細胞膜の水透過性を亢進させることが明らかとなった. 次に, atRA による AQP5 protein 発現上昇のメカニズムを解明するために, 以下の実験を行った.

まず, atRA の AQP5 mRNA 発現に対する影響を調べるために, MLE-12 細胞に 10 μM atRA を 0, 6, 12, 24 および 48 時間処理し, AQP5 mRNA の発現量を semi-quantitative RT-PCR にて調べた. その結果, atRA 处理後 12, 24 および 48 時間で, AQP5 mRNA の発現上昇が確認された (Fig. 32A).

また, atRA の用量依存的な効果を検証するために, MLE-12 細胞に 0.01, 0.1, 1 および 10 μM の atRA を 24 時間処理し, AQP5 mRNA の発現量を semi-quantitative RT-PCR にて調べた. その結果, Fig. 32C に示すように atRA は, 用量依存的に AQP5 mRNA の発現量を亢進した.

さらに, プライマーによる非特異的な増幅の可能性を排除するために, semi-quantitative RT-PCR で用いたプライマーと異なるベアを使い, real-time quantitative RT-PCR を行った. その結果, atRA 处理後 24 および 48 時間で, AQP5 mRNA の有意な発現上昇が確認された (Fig. 32B). また, atRA は, 用量依存的に AQP5 mRNA の発現量を有意に亢進した (Fig. 32D). atRA による AQP5 mRNA の発現亢進は, 最大でコントロールの約 2.5 倍であった.
Fig. 32. The effect of atRA on the expression of AQP5 mRNA. For time–dependency experiments (A, B), MLE–12 cells were incubated with 10 µM atRA for 0, 6, 12, 24, or 48 h. For concentration–dependency experiments (C, D), MLE–12 cells were incubated with 0.01, 0.1, 1, or 10 µM atRA for 24 h. Cells were then harvested and total RNA was prepared. (A, C) Semi–quantitative RT–PCR. PCR cycle: 25 cycles for AQP5 detection, and 20 cycles for GAPDH detection. Results are representative of two independent experiments. GAPDH was used as the PCR control. (B, D) Real–time quantitative RT–PCR. Each bar represents the mean ± SE from three independent experiments. *p<0.05 vs. 0 time control or the vehicle–treated control. *p<0.05 vs. the vehicle–treated control (48 h).
4) AQP5 mRNA の安定性に対する atRA の効果

atRA による AQP5 mRNA の発現亢進は、mRNA の安定性を上昇させたこと、または AQP5 の転写を活性化させたことの 2 点が、そのメカニズムとして考えられる。

そこで、まず、atRA の AQP5 mRNA の安定性に対する影響を調べるために、MLE-12 細胞に 10 μM atRA を 24 時間処理し、5 μg/ml actinomycin D を添加することで新規 RNA 合成を阻害した後、経時的に total RNA を回収し、AQP5 mRNA の発現量を調べた。その結果、コントロールにおいて、actinomycin D 処理 0 時間の AQP5 mRNA 量を 100% とした時、処理 6 時間では 40% と AQP5 mRNA 量は著明に減少していた。また、atRA 処理においても、actinomycin D 処理 6 および 12 時間での AQP5 mRNA 量にコントロールとの差は認められなかった (Fig. 33).

この結果より、atRA は、AQP5 mRNA の安定性に影響を与えないと考えられた。

Fig. 33. atRA did not change the stability of AQP5 mRNA in MLE-12 cells.
MLE-12 cells were incubated with 10 μM atRA for 24 h and then chased in the presence of 5 μg/ml actinomycin D for 0, 6, or 12 h. AQP5 mRNA levels were measured by semi-quantitative RT-PCR and normalized to GAPDH mRNA levels. Result represents the percentage of 0 h.
5) AQP5 プロモーター活性に対する atRA の効果と作用部位

次に、atRA は、AQP5 の転写を活性化するか否かについて検討するために、MLE-12 細胞に AQP5 プロモーター (-1325/+69) ルシファーゼプラスミドを遺伝子導入し、10μM atRA を 24 時間処理した後、プロモーター活性を測定した。その結果、atRA 処理により、AQP5 プロモーター活性は、コントロールの約 2.5 倍と有意に亢進した (Fig. 34A)。このことにより、atRA は AQP5 の転写を活性化することが明らかとなった。

そこで、atRA は、AQP5 プロモーター領域のどの部分に作用するのか調べるために、様々な長さの AQP5 プロモーターを用いて同様の実験を行った。その結果、AQP5 プロモーター (-1325/+69), (-764/+69), (-505/+69) および (-160/+69) のプロモーター活性は、atRA 処理によりコントロールの約 2 倍と有意に亢進した。しかしながら、-160/-46 の領域を欠損させると、atRA によるプロモーター活性の亢進作用は認められなかった (Fig. 34A)。

これらの結果より、atRA 感受性部位は、AQP5 プロモーターの-160/-46 の領域に含まれていることが示唆された。

AQP5 プロモーターの-160/-46 領域は、AQP5 プロモーター活性に重要な領域で、その活性に必要な SBE を含んでいる。そこで、atRA による AQP5 プロモーターの活性化における SBE の関与を調べるために、MLE-12 細胞に SBE 変異 AQP5 プロモーターを遺伝子導入し、10μM atRA を 24 時間処理した後、プロモーター活性を測定した。

その結果、AQP5 プロモーター (-160/+69), SBE-B 変異および SBE-D 変異コンストラクトにおいて、atRA による有意な活性亢進が認められた。一方、SBE-C 変異コンストラクトにおいては、atRA による活性亢進作用は認められなかった (Fig. 34B)。

この結果より、SBE-C は、atRA による AQP5 プロモーター活性亢進に重要であることが明らかとなった。
Fig. 34. *atRA* activated the AQP5 promoter through the SBE-C (-74/+66).
(A) MLE-12 cells were transiently transfected with the indicated AQP5 promoter constructs and incubated with 10 µM *atRA* for 24 h. Luciferase activity was then assessed. Results represent the means ± SD of three independent experiments. *p<0.05 vs. the vehicle-treated control. (B) Cells were transiently transfected with the indicated AQP5 promoter constructs and incubated with 10 µM *atRA* for 24 h. Luciferase activity was then assessed. Results represent the means ± SD of three independent experiments. *p<0.05 vs. the vehicle-treated control.
6) Sp1 活性に対する atRA の効果

ここまでで，atRA は，AQP5 プロモーター内の SBE-C を介して転写を活性化し，AQP5 の発現量を増加させていることが明らかとなった．そこで，atRA は，Sp1 および Sp3 にどのような影響を及ぼしているか検討するために，以下の実験を行った．

まず，atRA の Sp1 および Sp3 の発現量に対する影響を調べるために，MLE-12 細胞に 10 μM atRA を 24 時間処理した後，抽出物を回収し，Western blotting にて Sp1 および Sp3 の発現量を調べた．その結果，Sp1 および Sp3 の核内の発現量は，コントロールと atRA 処理間で著明な差はなかった（Fig. 35A）．

次に，atRA の Sp1 および Sp3 の DNA 結合能に対する影響を調べるために，10 μM atRA を 24 時間処理した MLE-12 細胞から抽出物を調製し，SBE-C をプローブとして EMSA を行った．既に明らかにしたように SBE-C には，Sp1 が主に結合する．この Sp1/SBE-C 複合体を示すバンドの強度は，atRA 処理により強くなった（Fig. 35B，lane4 and 5）．このことより，atRA は，Sp1 の DNA 結合能を上昇させることが示唆された．

最後に，atRA による Sp1 DNA 結合能の上昇は，Sp1 依存的なプロモーター活性亢進につながるか否か検討するために，MLE-12 細胞に Sp1 感受性プロモーター・コンストラクトを遺伝子導入し，1 または 10 μM atRA を 24 時間処理した後，プロモーター活性を測定した．その結果，atRA 処理により，Sp1 依存的プロモーターは有意に活性化され，その活性化は，atRA の用量依存的であった（Fig. 35C）．

これらの結果より，atRA は，核内 Sp1 量を変化させることなく，Sp1 DNA 結合能を上昇させることで，Sp1 依存的なプロモーターを活性化することが明らかとなった．
Fig. 35. atRA enhanced the DNA-binding activity of Sp1 without altering the levels of nuclear Sp1.

(A) MLE-12 cells were incubated with 10 μM atRA for 24 h and nuclear extracts were prepared. Fifty micrograms of nuclear extracts was applied to SDS-PAGE, followed by Western blotting with anti-Sp1 and anti-Sp3 antibodies. (B) Cells were incubated with 10 μM atRA for 24 h and nuclear extracts were prepared. Ten micrograms of nuclear extracts were used for EMSA. (C) Cells were transiently transfected with an Sp1-responsive luciferase plasmid and incubated with 1 or 10 μM atRA for 24 h. Luciferase activity was then assessed. Results represent the means ± SD of three independent experiments. *p<0.05 vs. the vehicle-treated control.
7) In vivoにおけるAQP5 proteinの発現に対するatRAの効果

これまでで、肺胞上皮細胞において、in vitroでatRAは、Sp1を活性化することでAQP5の発現量を上昇させ、その結果細胞膜の水分透過性を亢進させることが明らかとなった。そこで、atRAによるAQP5の発現亢進作用が、in vivoでも認められるか検討した。

まず、7週齢のICRマウスにatRA（10 mg/kg body weight）を5日間毎日腹腔内投与した。各マウスから肺を摘出後、whole cell lysateを調製し、Western blottingにてAQP5 proteinの発現量を調べた。なお、atRA投与による急激な体重減少および目立った外見的変化は認められなかった。

その結果、atRA投与群において、AQP5 proteinの発現量は有意な高値を示した（Fig. 36A and B）。このことより、in vivoでもatRAは、AQP5の発現量を増加させることが分かった。

Fig. 36. The in vivo effect of atRA on the expression of AQP5 protein. (A) Male ICR mice were injected daily intraperitoneally with atRA (10 mg/kg body weight) for 5 consecutive days. Lungs were then isolated, homogenized and whole cell lysates were prepared. Fifty micrograms of whole cell lysates was applied to SDS–PAGE, followed by Western blotting with anti–AQP5 antibody. As a loading control, the gel was stained with CBB. (B) Quantitative analysis of AQP5 expression, normalized to a loading control, was performed using Image Gauge software. Values represent the means ± SE of atRA–treated (n=3) or vehicle–treated mice (n=4). *p<0.005 vs. the vehicle–treated mice.
第4節 考察

本章では、マウス肺上皮細胞株およびマウス肺において atRAは、AQP5 proteinの発現量を上昇させることを明らかにした（Fig. 30 and 36）。さらに、atRAによるAQP5の誘導は、細胞膜水分透過性の上昇と相関することが確認された（Fig. 31）。半定量および定量的 RT-PCRにおいて、atRAは、AQP5 mRNAの安定性に影響しないが（Fig. 33）、一方で、AQP5 mRNA量を増加させることが確認された（Fig. 32）。加えて、ルシフェラーゼアッセイにおいて、atRAは、AQP5プロモーター活性を上昇させた（Fig. 34A）。従って、atRAは、AQP5遺伝子の転写を活性化することで、AQP5proteinを上昇させたと考えられる。

atRAによる遺伝子発現誘導は、一般的に retinoic acid receptor/retinoic X receptor (RAR/RXR) heterodimerを介することが報告されている100,101）。このheterodimerは、ターゲット遺伝子上のretinoic acid response element (RARE)に結合し、転写を活性化する。しかしながら、データベース検索の結果、ラットAQP5遺伝子の5′-上流領域にはRAREに相同期性のある配列は存在していなかった（Fig. 2）。一方、AQP5プロモーターのSBE-C（-74/-66）の欠損変異体および点変異体は、atRAに対する反応性がなかった（Fig. 34B）。このことから、atRAは、SBE-C（-74/-66）を介してAQP5プロモーターを活性化していると示唆された。また、atRAはSp1の発現量に影響することなく、SBE-Cへの結合量を増加させることが示された（Fig. 35A and 35B）。さらに、atRAは用量依存的にSp1活性を上昇させることがSp1依存的ルシフェラーゼアッセイにより明らかとなった（Fig. 35C）。従って、atRAは、Sp1のDNA結合能を亢進することで、SBE-Cを介しAQP5の転写を促進することが示唆された。

atRAによるSp1を介した同様の遺伝子発現誘導は、urokinase, transforming growth factor-β (TGFβ), TGFβ receptorやVEGF（vascular endothelial growth factor）遺伝子等において報告されている102,103）。これらの遺伝子において、atRAは、2段階の過程を経て遺伝子の発現を誘導する。先ず、atRAは、RAR遺伝子上のRAREを介してRARの発現を誘導する。次に、誘導されたRARは、物理的にSp1と結合し、これらの遺伝子上にあるSBEへのSp1の結合を増強する、その結果、Sp1依存的に遺伝子発現を誘導する。従って、更なる検討が必要であるが、AQP5の場合においても、atRAは同様の2段階の過程を経てSp1のDNA結合能を上昇させたと考えられる（Fig. 37）。
atRA は、Sp1 を活性化することで AQP5 mRNA を増加させた。これまで、hypertonic stress とβ-adrenergic agonist が、atRA と同様に AQP5 の発現を上昇させることが報告されている。Hypertonic stress は、ERK MAP kinase 依存的経路を介して、AQP5 mRNA を増加させる一方、β-adrenergic agonist は、cyclic AMP-dependent kinase の活性化を介して、AQP5 mRNA を増加させる。また、Sp1 は、ERK MAP kinase や cyclic AMP-dependent kinase により活性化されることが知られている。従って、Sp1 は、これらの刺激による AQP5 発現誘導を仲介している可能性が示唆されるが、これら の可能性については更なる検討が必要であろう。

atRA は、dexamethasone 投与や酸素吸入による肺傷害を改善することが報告されている。様々な呼吸器疾患モデルの炎症部位において AQP5 の発現量が低下していることを考えると、これらの肺でも AQP5 が減少していることが推察される。また、肺胞での水分クリアランスの低下は種々の呼吸器疾患の重篤度や予後を相関することを考慮すると、atRA による肺傷害改善に AQP5 の発現亢進および細胞膜水分透過性の亢進が少なくとも一部関与していると考えられる。

Fig. 37. Schematic model of the atRA-induced AQP5 expression.
First, atRA induces the expression of RARs through RARE. Second, atRA–RARs physically interact with Sp1 and augment binding of Sp1 to SBE within AQP5 gene, leading to Sp1-mediated increase in AQP5 gene transcription. However, it is not confirmed whether the first pathway is involved in the atRA-induced AQP5 expression.
第5節 小括

本章では，肺におけるAQP5の発現を薬理学的に調節することを目的として，種々の検討を行った．得られた知見を以下に要約する．

1. 肺胞上皮細胞およびマウス肺において，atRAは，AQP5の発現量を増加させることが明らかとなった．

2. AtRAはSp1のDNA結合能を亢進することにより，AQP5プロモーター上のSBEを介しAQP5の転写を促進することが明らかとなった．

3. AtRAは，細胞膜水分透過性を亢進させることが明らかとなった．

AtRAは数多くの薬理作用を持つことが知られているが，細胞膜の水分透過性亢進作用は，これまで明らかでていない新規作用である．従って，atRAによるAQP5促進および水分透過性亢進作用は，水分代謝異常を伴う呼吸器疾患の改善を考える上で非常に興味深い．
第4章 総括

呼吸すなわちガス交換を行う肺胞は、I型細胞とII型細胞から構成されている。肺胞の傷害は、ARDS/ALI、気腫病変、IPFなど様々な呼吸器疾患において共通する病理的特徴である。肺胞が傷害を受けると、I型細胞が基底膜より脱落し、比較的刺激に対して耐性のあるII型細胞が生き残る。その後、修復期に入るとII型細胞が腫瘍的に増殖し、II型細胞の一部がI型細胞に分化することで、肺胞を再構築する。しかしながら、肺胞修復の鍵となる段階であるII型細胞からI型細胞への分化調節機構は未だ解明されていない。この分化調節機構を解明するためにはI型細胞の分化マーカーが有用であるが、AQP5はその候補の一つである。AQP5は、水チャネルの一種で、水分子のみならずCO₂ガス分子も透過させることが知られており、肺胞における発現はI型細胞に限局している。従って、AQP5はガス交換および水分代謝調節というI型細胞の主要機能を分子レベルで説明する唯一のタンパク質で、I型細胞の分化マーカーに適していると考えられる。また、AQP5の発現は、時間的にも空間的にもI型細胞特異的な機構により高度に調節されており、その調節機構は、未だ解明されていないI型細胞への分化調節機構と協調していると考えられるが、I型細胞特異的なAQP5の発現調節機構は明らかになっていない。

一方、様々な呼吸器疾患モデルの炎症部位においてAQP5の発現量が低下していることが示されている。また、AQP5欠損マウスの75％は出生時致死すること、生き残った25%では肺胞腔-血管間の水分透過性が野生型に比べ著明に減少することが報告されている。従って、AQP5は肺胞における水分代謝など肺機能に重要なタンパク質で、肺胞の水分クリアランスが種々の呼吸器疾患の重篤度や予後を決定づける要因の一つであることを考え合せると、炎症反応などによりAQP5の発現量が減少することは、肺水腫などI型細胞の機能異常を伴う種々の呼吸器疾患の病態生理に密接に関与していると考えられる。そのため、AQP5の発現量を薬理学的に調節できれば、炎症領域における水分代謝やガス交換など肺機能を改善できるのではないかと考えられる。

そこで、本研究では、AQP5のI型細胞選択的な発現調節機構の解明、およびこの発現調節機構に基づいたAQP5発現量の薬理学的調節を目的として検討を行った。

1. AQP5のI型細胞選択的な発現調節機構

第2章では、AQP5のI型細胞選択的な発現調節機構を解明するため、まず、ラットAQP5遺伝子のプロモーター領域を解析し、その発現に重要な転写因子を同定した後、AQP5の発現調節における役割について検討した。その結果、AQP5のプロモーター活性には2カ所のSBEが重要であること、SBEを介してSp1はAQP5の発現を促進し、Sp3は抑制することを明らかにした。さらに、Sp1/Sp3発現量のバランスがAQP5の発現調節に重要であるこ
とが示唆された。また、AQP5 の発現調節における DNA メチル化の役割について検討し、AQP5 プロモーターの DNA メチル化が、SBE への Sp1 の DNA 結合を阻害することにより AQP5 の転写を抑制することを明らかにした。さらに、I 型細胞へと分化する II 型細胞の初代培養系および肺切片を用いた検討から、I 型細胞では II 型細胞に比べ Sp3 の発現の低下および AQP5 プロモーターの DNA 脱メチル化が生じていることが明らかとなった。これらの結果から、I 型細胞における AQP5 の発現は、Sp3 の消失および DNA 脱メチル化、およびこれらに付随した Sp1 の活性化により調節されていることが示された。

2. AQP5 発現の薬理学的調節

第 3 章では、AQP5 発現量を薬理学的に調節するために、Sp1 活性を指標に薬物を探索し、AQP5 発現に対する作用およびその作用機序について検討した。その結果、肺胞上皮細胞において、arRA が、SBE への Sp1 の DNA 結合能を亢進し AQP5 の転写を活性化することで、AQP5 の発現量を増加させることを明らかにした。さらに arRA の新規薬理作用として、細胞膜の水分透過性を亢進させることを明らかにした。

以上、本研究で得られた知見から、AQP5 の発現調節における Sp1 の重要性が明らかとなった。さらに、Sp3 による競合的阻害、SBE の DNA メチル化およびレチノイン酸刺激が、Sp1 転写因子の活性の調節を介して、AQP5 の I 型細胞特異的な発現のみならず II 型細胞から I 型細胞への分化を調節する可能性が示唆された。本研究の成果は、AQP5 の発現調節機構のみならず、未だ明らかとなっていない II 型細胞から I 型細胞への分化調節機構の解明および肺水腫など I 型細胞の機能異常を伴う呼吸器疾患の病態生理の解明さらには治療法の開発のための基礎データとなるだろう。
実験の部

第1節 実験材料

第1項 試薬

本研究に際し、使用した主な試薬を以下に示す。

Trypsin, Bacto® tryptone, Bacto® yeast extract (以上, Difco), 1kb DNA ladder, High Fidelity AccuPrime™ Taq DNA polymerase (Invitrogen), Dulbecco’s modified Eagle medium (日水), kanamycin sulfate, ampicillin sodium salt, gentamicin sulfate, Blocking One, dithiothreitol, TEMED, Triton X-100, Nonidet® P-40 (以上, ナカライテスク), all-trans retinoic acid, 5-azacytidine, mithramycin A, bovine serum albumin, penicillin G, streptomycin, goat normal serum, fibronectin (bovine plasma), glycerol 2-phosphate disodium salt hydrate, sodium orthovanadate, protease inhibitor cocktail, bromodeoxyuridine, proteinase K, hydroquinone, sodium bisulfite, deoxyribonuclease I (以上, Sigma), T4 DNA ligase, T4 polynucleotide kinase, TaKaRa LA Taq®, IPTG, Klenow fragment, EcoRI, EcoRV, Kpn I, Hind III, Not I, Pst I, Pvu II, Sac I, Sac II, Sma I, Xho I (以上, TaKaRa), TGF-β1, KGF (以上, R&D systems), ribonuclease A (Nippongene)

その他の試薬および無機塩類は市販の特級品を使用した。

第2項 抗体

本研究に際し、使用した抗体を以下に示す。

Rabbit polyclonal anti-AQP5 (Alomone labs.), rabbit polyclonal anti-Sp1 (clone: PEP2, Santa Cruz Biotechnology), rabbit polyclonal anti-Sp3 (clone: D-20, Santa Cruz Biotechnology), mouse monoclonal anti-ABCA3 (p180 lamellar body protein, clone: 3C9, BAbCO), mouse monoclonal anti-T1α (clone: MEP1, from Dr. Takeya, Department of Cell Pathology, Kumamoto University), mouse monoclonal anti-β-
actin (clone: AC-15, Sigma), phycoerythrin (PE)-conjugated mouse monoclonal anti-BrdU (clone: IIB5, Santa Cruz Biotechnology), Alexa Fluor® 488-conjugated goat anti-rabbit IgG (Molecular Probes), tetramethylrhodamine isothiocyanate (TRITC)-conjugated goat anti-mouse IgG (Sigma), horseradish peroxidase (HRP)-conjugated sheep anti-rabbit IgG (Jackson labs.), HRP-conjugated rabbit anti-mouse IgG (Wako)

第3項 Oligonucleotide

Oligonucleotideは、ジーンネット社に合成を依頼した。本研究に際し、使用したprimer、probeおよびsiRNAの配列を以下に記す。

(1) AQP5 promoterのクローニング（5'→3’）
AQP5Promoter(-1325)-F GAGCTCAAGCAGCATTTTG
AQP5Promoter(-1239)-F CCGCTCGAGCCTGGAAAGCCTCC
AQP5Promoter(-1067)-F CCGCTCGAGGAATGGGAGATAGC
AQP5Promoter(-953)-F AACCAAGAGTCAGAGGAGATGGAGG
AQP5Promoter(-764)-F TTCCCTGACACCATGCTCAGG
AQP5Promoter(-655)-F CCGCTCGAGCTGCTAGAGCCAAACAC
AQP5Promoter(-626)-F CCGCTCGAGCGCTGAAGGAGACCCG
AQP5Promoter(-505)-F CCGCTCGAGTAAGGCGCTGTCC
AQP5Promoter(-375)-F TAAAGCGGGCGGAGCGACG
AQP5Promoter(-268)-F AACAGCGCTGAGCGACG
AQP5Promoter(+69)-R TGGTAGCGGCGGCGTCTGCTG

(2) AQP5 promoterへの変異挿入（5'→3’）
-1250mutation-Sp1 GGTGTTGGCAGCTGGGCAAGGATCCACC
Mutation-Kpn I GAGATCTCCAGCTCTTACG
pGL2 primer-F TGATATCTATGGTACTGAACTG
pGL2 primer-R CTTTAAGGCTGCTGTCTTCAA
AQP5mut1-S GGAGAGCGAGCTGCAGCCGGCCAG
AQP5mut1-AS CTGGCCGGCTGACGCTGCCTCC
AQP5mut2-S GGAGCCGGCTCTAGACCCCCCGCG
AQP5mut2–AS CGCGGGGGGGTCTAGAGGCAGCTCCC
AQP5mut3–S CGCGCTCTGCCCCCTCGAGGGGCGCCG
AQP5mut3–AS CGCGCCCCCTCGAGGCAGAGCGCGG

(3) RT–PCR (5’→3’)
ratAQP5–F GGCCACATCAATCCAGCCATTA
ratAQP5–R GGCCTGGGTTACATGGAACAGCC
ratAQP5quant–F ACCATCTTCCAGGACGCAGA
ratAQP5quant–R CAGTCTTCTGGTGGCATGT
ratT1α–F TCGGTGCGCTAGAAGATGAT
ratT1α–R TCTTCCCTCCACAGGAAGGG
ratSP–A–F TCTTGGCCTCACCCTCTT
ratSP–A–R CACTTTCTTTGCCCCTGACC
ratSP–C–F GCATCTCAAACGCCTTCTCA
ratSP–C–R CTCCGCCAAGAAGATCATGAA
ratSp1–F TGTGAATGCTGCTCAACTGTCC
ratSp1–R CATGTATTCATCACCAGCCAG
ratSp3–F CTACACCTGAATACCAATGAC
ratSp3–R GCCAGAAGCATTAGCAGTTG
GAPDH–F ACCATCTTCCAGGAGCGA
GAPDH–R CAGTCTTCTGGTGCCAGTG
18SrRNA–F CAACCTTCTGATGCTAGTCGC
18SrRNA–R CGCTATTGAGCTGGAATTAC

(4) EMSA probe (5’→3’)
SBE–A–S GGATCCTTGCCCCTGCCCCAACCC
SBE–A–AS GGGTTTGGGGCGAAGGCAAGGATCC
SBE–C–S GAGCGGCCCGCGCCCCCCGCGCT
SBE–C–AS AGCCGCGGCGGGCCGGCCGGGGCTC
Sp1/Sp3 consensus–S ATTCGATCGGGCCGGGCGAGC
Sp1/Sp3 consensus–AS GCTCGCCCCCGCCGATCGAAT
(5) siRNA (5’→3’)
Sp1 siRNAは、過去の報告に従って作製した10,11)。
Sp1 siRNA #1-S AAUGAGAACAGCAACAACUCCTT
Sp1 siRNA #1-AS GGAGUUGUUGCUUGCUCAUUUTT
Sp1 siRNA #2-S AUCACUCCACGGAUGAAAUGATT
Sp1 siRNA #2-AS UCAUUUCAUCCGUGGAGUGAUTC

(6) ChIP (5’→3’)
AQP5 distal SBE-F GAGCTCAAGCAGCAGATTTG
AQP5 distal SBE-R AACCTCCTCTGCAGTTGTGATG
AQP5 proximal SBE-F AACAGCGCTGAGCGCAAGATG
AQP5 proximal SBE-R TGGTAGCGGCGGCCTCGTCTG

(7) Sodium bisulfite DNA sequencing (5’→3’)
For rat AQP5 promoter
1st PCR-F GATTTTTGAGGTTTGTGGGAG
1st PCR-R CTTAAAAAAACAAAAACACACCTCC
2nd PCR-F GATTTTTGAGGTTTGTGGGAG
2nd PCR-R AACCTAAAAACACCRATAAC
For mouse AQP5 promoter
1st PCR-F GTTTAGGAGGAGAAAAGGGGAAGTGTG
1st PCR-R AAAAAACAACTAAACACACCTCCTTC
2nd PCR-F GTYGGGTAGTTTATATTGT
2nd PCR-R AACCTAAAAACACRATAAC
第2節 実験方法

第1項 細胞株培養法

培養に用いた器具類は全て、オートクリーブによる滅菌処理を施し、溶液類の調製には注射用蒸留水（大塚）あるいは超純水製造装置（Milli-Q Labo, Millipore）により精製した超純水を用いた。また、全ての操作は、クリーンベンチ内で無菌的に行った。

1. 細胞株の培養

マウス肺胞上皮細胞株 MLE-12 細胞、ラット肺胞上皮細胞株 L2 細胞およびマウス線維芽細胞株 NIH-3T3 細胞は、American Type Culture Collection より入手した。細胞は 1.5×10^6 cells/ml となるように、10% 牛胎仔血清 (FBS), 100 units/ml penicillin G, 100 μg/ml streptomycin を含む Dulbecco’s modified Eagle’s medium (DMEM) に懸濁し、dish または flask に (2.0×10^4 cells/cm²) に播種後、5% CO₂, 37℃下で静置培養した。

2. 試薬処理

(1) 5-azacytidine (5-AC) 処理

各濃度の 5-AC (vehicle: 0.1% DMSO), 10% FBS, 100 units/ml penicillin G, 100 μg/ml streptomycin を含む DMEM に MLE-12 細胞または NIH-3T3 細胞を懸濁し、plastic culture dish に播種後、5% CO₂, 37℃下で静置培養した。なお、5-AC を含んだ medium は、一日おきに fresh なものに交換した。

(2) All-trans retinoic acid (atRA)

MLE-12 細胞を 10% FBS, 100 units/ml penicillin G, 100 μg/ml streptomycin を含む DMEM にて 24 時間培養した後, 無血清状態にした。12 時間の無血清状態後、各濃度の atRA (vehicle: 0.1% ethanol), 1% FBS, 100 units/ml penicillin G, 100 μg/ml streptomycin を含む DMEM にて、5% CO₂, 37℃下で静置培養した。
第2項 ラット肺胞Ⅱ型上皮細胞の単離・培養

ラット肺胞Ⅱ型上皮細胞は、Dobbs らの方法を一部改変した、以下に示す方法を用いて単離した。12) また、単離および培養に用いた器具類は全て、オートクレーブによる滅菌処理を施し、溶液類の調製には注射用蒸留水あるいは超純水製造装置により精製した超純水を用いた。また、全ての操作は、クリーンベンチ内で無菌的に行った。

1. ラット肺胞Ⅱ型上皮細胞の単離

実験動物として Wister 系雄性ラット（6-7 週齢；体重 180-200 g，九動）を用いた。まず、ラットを pentobarbital sodium（25 mg/kg, i.p.）にて麻酔した。その後、70% ethanol で全身を消毒し、開腹。下大動脈より脱血致死させた。肺を損傷しないように注意深く露出した後、solution 2（140 mM NaCl, 5 mM KCl, 10 mM HEPES, 2 mM CaCl₂, 1.3 mM MgSO₄, 2.5 mM Na-phosphate buffer; pH 7.35）にて脱血灌流し、気管と共に肺を摘出した。摘出された肺を solution 1（140 mM NaCl, 5 mM KCl, 10 mM HEPES, 6 mM glucose, 0.2 mM EGTA, 2.5 mM Na-phosphate buffer; pH 7.35）にて洗浄した後、A 質を均一に 0.06% trypsin を肺内に注入し、37℃で 15 分消化することで肺胞上皮細胞を分散した。ついで、50% FBS および 250 μg/ml DNase I を含んだ solution 1 を肺内に注入後、肺を 1-2 mm³ の大きさに細切し、37℃で 2 分間しゃかにビペットティングした。さらに組織片を 150 μm および 15 μm のナイロンメッシュにて濾過し、細胞懸濁液を得た。混在するマクロファージを除くために、得られた細胞を DMEM に再懸濁し、ベトリ皿で 1 時間培養した。上清を回収後、遠心し（1,000×g, 8 min），精製したラット肺胞Ⅱ型上皮細胞をベレットとして得た。
なお、本方法で得られた上皮細胞は、95%以上が肺胞Ⅱ型上皮細胞であることをアルカリフォスファターゼ染色法により、また、95%以上が生細胞であることをトリパンブルー染色法により確認した。

2. ラット肺胞Ⅱ型上皮細胞の培養

単離・精製したラット肺胞Ⅱ型上皮細胞は、10% FBS, 100 units/ml penicillin G, 100 μg/ml streptomycin, 20 μg/ml gentamicin を含む DMEM に懸濁し、plastic culture dish（3.5×10⁶ cells/cm²）に播種後、5% CO₂, 37℃下にて静置培養した。播種 24 時間後、DMEM を噴きつけることで、未付着のラット肺胞Ⅱ型上皮細胞を除去した。
第3項 レポーター遺伝子の調製

1. ラット genomic DNA の単離

ラット AQ5 プロモーター領域をクローニングするために、L2 細胞から genomic DNA を単離した。まず、コンフルエンス状態の L2 細胞から培地を除き、冷 PBS にて細胞を洗浄した。これに Lysis buffer (50 mM Tris-HCl; pH 7.5, 20 mM EDTA, 100 mM NaCl, 1% SDS, 150 μg/ml proteinase K) を加え、55℃で一晩インキュベートした。この細胞可溶化物を phenol 处理、phenol/chloroform 处理および chloroform 处理することで変性タンパク質を除去した後、isopropanol 沈殿により得られたベレットを 70% ethanol にて洗浄した。このベレットを RNase A (20 μg/ml) を含んだ Tris-EDTA (pH 8.0) に溶解することでラット genomic DNA を得た。なお、全ての操作は、genomic DNA が切断されないよう先端カッ トチップを用い、攪拌にはローターやを使用した。

2. AQ5 レポーター遺伝子の調製

細胞における AQ5 の転写活性を測定するためのレポーター遺伝子としてルシフェラーゼ遺伝子を用いた。ラット AQ5 プロモーター領域のクローニングおよびルシフェラーゼ発現ベクター pGL2 basic または pGL4.17 (Promega) へのサブクローニングの方法を以下に示す。なお、全ての DNA の塩基配列は、Macrogen, Inc. (Korea) に DNA 配列の解読を依頼し、確認した。

(1) AQ5 promoter (-1325/+69)

ラット genomic DNA を鉤型とし、primer に AQ5 Promoter(-1325)-F, AQ5 Promoter(+69)-R, polymerase に TaKaRa LA Taqβ (TaKaRa) を用いて PCR (1 cycle at 94℃ for 2 min, 40 cycles at 94℃ for 30 sec, 57℃ for 30 sec, 72℃ for 2 min, 1 cycle at 72℃ for 5 min) を行った。得られた PCR 産物を pCR®2.1 (Invitrogen) に挿入した後、HindⅢおよび XhoⅠで制限酵素処理し、pGL2 basic vector または pGL4.17 の HindⅢおよび XhoⅠ部位に挿入した。

(2) AQ5 promoter (-953/+69), (-764/+69), (-375/+69), (-268/+69)

AQ5 promoter (-1325/+69)/pGL2 を鉤型として、上流の primer にそれぞれ AQ5 Promoter(-953), (-764), (-375), (-268)-F, 下流の primer に AQ5 Promoter(+69)-R を用い, TaKaRa LA Taqβにて PCR (1 cycle at 94℃ for 2 min, 35 cycles at 94℃ for 30 sec,
57℃ for 30 sec, 72℃ for 1.5 min, 1 cycle at 72℃ for 5 min)を行った。得られたPCR産物をpCR®2.1に挿入した後、HindⅢおよびXhoⅠで酵素処理し、pGL2 basic vectorのHindⅢおよびXhoⅠ部位に挿入した。

(3) AQP5 promoter (-1239/+69), (-1067/+69), (-655/+69), (-626/+69), (-505/+69)

AQP5 promoter (-1325/+69)/pGL2を錬型として、上流のprimerにそれぞれAQP5Promoter(-1239), (-1067), (-655), (-626), (-505)-F, 下流のprimerにpGL2 primer-Rを用い、TaKaRa LA Taq®にてPCR(1 cycle at 94℃ for 2 min, 35 cycles at 94℃ for 30 sec, 60℃ for 30 sec, 72℃ for 1.5 min, 1 cycle at 72℃ for 5 min)を行った。得られたPCR産物をpCR®2.1に挿入した後、HindⅢおよびXhoⅠで酵素処理し、pGL2 basic vectorのHindⅢおよびXhoⅠ部位に挿入した。

(4) AQP5 promoter (Δ-231/-46)

AQP5 promoter (-1325/+69)/pGL2をSacⅡで酵素処理した後、連続反応を行った。得られたプラズミドを酵素処理することにより、-231/-46の領域が欠損していることを確認した。

(5) AQP5 promoter (-160/+69)

AQP5 promoter (-268/+69)/pGL2をSmaⅠで酵素処理した後、Klenow fragment (TaKaRa)にて平滑末端化し、連続反応を行った。得られたプラズミドを酵素処理することにより、-160/+69がインサートとして入っていることを確認し、これをAQP5 promoter (-160/+69)/pGL2とした。また、AQP5 promoter (-160/+69)/pGL2をSmaⅠおよびHindⅢで酵素処理し、pGL4.17のEcoRVおよびHindⅢ部位に挿入し、これをAQP5 promoter (-160/+69)/pGL4.17とした。

(6) AQP5 promoter (-45/+69)

AQP5 promoter (-268/+69)/pGL2をSacⅡおよびXhoⅠで酵素処理した後、連続反応を行った。得られたプラズミドを酵素処理することにより、-45/+69がインサートとして入っていることを確認した。

(7) AQP5 promoter 上流側SBEへの変異挿入（Mut A）

AQP5 promoter (-1325/+69)/pGL2を錬型として、pGL2 primer-Fおよび-1250mutation-Sp1, Mutation-KpnⅠおよびpGL2 primer-Rをそれぞれprimerペアに用い、1st PCR(1 cycle at 94℃ for 2 min, 30 cycles at 94℃ for 30 sec, 51-62℃ for 30 sec,
72℃ for 1.5 min）を行った。さらにそれぞれの PCR 産物を混合、鋳型とし、pGL2 primer-F および pGL2 primer-R を用いて、2nd PCR (1 cycle at 94℃ for 2 min, 35 cycles at 94℃ for 30 sec, 55℃ for 30 sec, 72℃ for 1.5 min, 1 cycle at 72℃ for 5 min) を行った。得られた PCR 産物を Kpn I で制限酵素処理し、pGL2 basic vector の Kpn I 部位に挿入した。

(8) AQP5 promoter 下流側 SBE への変異挿入 (Mut B), (Mut C), (Mut D)
変異の挿入には、QuickChange® II XL Site-Directed Mutagenesis kit (Stratagene) を用いた。AQP5 promoter (-160/+69)/pGL2 を鋳型とし、MutB のために AQP5mut1-S および AQP5mut1-AS, Mut C のために AQP5mut2-S および AQP5mut2-AS, Mut D のために AQP5mut3-S および AQP5mut3-AS をそれぞれ primer ペアに用い、PCR (1 cycle at 95℃ for 1 min, 18 cycles at 95℃ for 50 sec, 60℃ for 50 sec, 68℃ for 2.5 min, 1 cycle at 68℃ for 7 min) を行うことで目的のコンストラクトを得た。

(9) SBE を挿入したレポータープラスミド (pSp13-Luc)
Dr. Stephen Safe (Texas A&M University) より供与していただいた。

第 4 項 蛋白質発現プラスミドの調製

1. Sp1/pN3 および Sp3/pN3
Dr. Guntram Suske (Philipps University) より供与していただいた。

2. Antisense Sp3/pcDNA3.1(+)
Antisense Sp3 construct の作成は、Lee LT.らの方法に従った。Sp3/pN3 を EcoRV および Not I で制限酵素処理し、pcDNA3.1 (+) (Invitrogen) の EcoRV および Not I 部位に挿入した。
第5項 細胞への遺伝子導入法

1. プラスミドDNAの導入
細胞へのプラスミドDNAの導入は、TransFast™ Transfection Reagent（Promega）を用い、そのプロトコールに従った。プラスミドDNAとTransFast™溶液を1µg:3µl（DNA:TransFast™）の割合で混和し、全量をDMEMにて400または800µlとした。この混合液を室温にて10分間反応後、12または6wellplate上のサブコンフルエンステーティムに添加した。1時間、37℃にて培養後、10%FBSを含むDMEMを新たに800または1600µl加えた。目的時間、37℃にて培養後、実験に用いた。

2. siRNAの導入
細胞へのsiRNAの導入は、Oligofectamine™ reagent（Invitrogen）を用い、そのプロトコールに従った。まず、siRNA100または200ngをDMEMにて90µlに希釈した（A液）。ついで、3µlのOligofectamine™をDMEMにて10µlに希釈し、室温で10分間反応させた（B液）。A液およびB液を混合し、室温で15分間反応後、12wellplate上、400µlDMEMにて培養された50%コンフルエンステーティムに添加した。添加6時間後に、30%FBSを含むDMEMを250µl加え、目的時間、37℃にて培養後、実験に用いた。

第6項 プロモーター活性の測定
レポーター遺伝子を導入した細胞におけるプロモーター活性は、Dual-Luciferase® assay System（Promega）を用い測定した。12wellplate上で24または48時間培養した細胞から培地を除き、冷PBSにて2回細胞を洗浄し、250µlの細胞溶解液を加え、室温にて15分間静かに振盪させた。その後、細胞溶解液を回収し、この上清20µlと発光基質液100µlを室温で混和し、ルシフェラーゼ活性をルミノメーター（LumatLB9507、eg&gbertholdt）にて測定した。また、細胞間の導入効率の補正を目的に、全てのプラスミドと共に出発遺伝子導入したpRL-TKまたはpGL4.74（hRLuc/TK、Promega）の活性も同時に測定した。細胞溶解液に含まれる蛋白質量はBio-RadProteinAssay（Bio-Rad）を用い測定した。なお、ホタルルシフェラーゼ活性と、シーバンジールシフェラーゼ活性または蛋白量との比によってrelative luciferaseactivityを算出した。
第7項 細胞溶解液および核蛋白抽出物の調製法

1. 細胞溶解液の調製法

(1) 培養細胞

培養細胞から培地を除き、冷 PBS で2回洗浄した。冷 PBS を加え、セルスクレイパーにて細胞を回収し、遠心（15,000×g, 4℃, 1 min）した。得られた培液に冷 lysis buffer (50 mM Tris-HCl; pH7.5, 150 mM NaCl, 5 mM EDTA, 1% NP-40, 0.1% SDS, 0.5% deoxycholate, 1%v/v protease inhibitor cocktail) を加え、ピペットングし、氷上にて30分間静置した。静置後、遠心（15,000×g, 4℃, 10 min）し、上清を細胞溶解液とした。

(2) 組織

摘出した組織を冷 PBS で2回洗浄した。洗浄した組織に冷 lysis buffer (50 mM Tris-HCl; pH7.5, 150 mM NaCl, 5 mM EDTA, 1% NP-40, 0.1% SDS, 0.5% deoxycholate, 1%v/v protease inhibitor cocktail) を加え、氷上にてホメジェナイザーで組織を破砕または、はさみで細切した。破砕後、遠心（15,000×g, 4℃, 10 min）し、上清を細胞溶解液とした。

2. 核蛋白抽出物の調製法

培養した細胞から培地を除き、冷 PBS で2回洗浄した。冷 PBS を加え、セルスクレイパーにて細胞を回収し、遠心（15,000×g, 4℃, 1 min）した。得られた培液に100 μlの冷 buffer A (10 mM HEPES; pH 7.9, 10 mM KCl, 1.5 mM MgCl₂, 0.5 mM DTT, 1%v/v protease inhibitor cocktail, 1 mM sodium vanadate, 30 mM β-glycerol phosphate) を加え軽くかき混ぜ、10分間冷却した。さらに6 μl の10% NP-40 を加え激しく混ぜた後、5分間冷却し、遠心（15,000×g, 4℃, 15 sec）した。得られた培液を冷 buffer A にて1回洗浄した後、50 μlの冷 buffer B (20 mM HEPES; pH 7.9, 420 mM NaCl, 1.5 mM MgCl₂, 25% glycerol, 0.2 mM EDTA, 0.5 mM DTT, 1%v/v protease inhibitor cocktail, 1 mM sodium vanadate, 30 mM β-glycerol phosphate) で懸濁後、30分間冷却した。この懸濁液を遠心（15,000×g, 4℃, 5 min）し、上清を核抽出物として得た。なお、得られた核抽出物は液体窒素にて速やかに凍結し、実験に用いるまで-80℃で保存した。
第8項 Electrophoretic gel mobility shift assay (EMSA)

1. 標識DNA probeの調製
前記したprobe用 oligonucleotideペアを等量ずつ混和し、5分間熱処理後、徐々に冷却することにより二本鎖oligonucleotideを得た。さらに、T4 polynucleotide kinase(TaKaRa)を用い、その5'末端を[γ-32P]-ATPにて標識した。

2. EMSA
核蛋白抽出物10μgを冷bindingbuffer(10mM HEPES; pH7.9、50mM KCl、5mM MgCl2、5mMEDTA、10%glycerol、1mMDTT、2μgpoly(dI-dC))中で10分間水上にて反応させた。その際、核蛋白抽出物とDNAとの結合が特異的であるか検討するため、特異的抗体（2μg）もしくは過剰量の未標識DNAを添加した。このサンプルに1μlの標識DNA probe（5〜10×104cpm）を加え、さらに室温で15〜20分間反応させた後、4% native polyacrylamide gel（PAGE）にて電気泳動（4℃、0.25×TBE、5mM、2.5〜3時間）した。泳動後のgelをWhatman33M紙上にて乾燥させた後、Imaging plateに露光し、Bio-Imaging Analyzer BAS 1000 system（Fuji Film）にて解析した。

第9項 Northern blotting

1. Messenger RNA（mRNA）の精製
mRNAの精製には、Oligotex™-dT30<Super>mRNA purification kit（TaKaRa）を用い、そのプロトコールに従った。

2. 標識cDNA probeの調製
Rat AQP5 cDNAおよびchicken β-actin cDNAをそれぞれprobeとして用いた。標識には、Random primer DNA labeling kit ver.2（TaKaRa）を用い、[α-32P]-dCTPにて標識した。

3. Northern blotting
培養細胞から抽出・精製したmRNAを1%agarosegelで電気泳動した後、キャビラリー法にてNylon膜（Hybond™-N，GE Healthcare Life Sciences）に転写した。この膜をプ
ラスチックボトルに封入し、PerfectHyb® hybridization buffer (TOYOB) 中で 68℃, 1 時間 prehybridization した。ついで、標識した cDNA probe (20-30×106 cpm) を加え、さらに 68℃, 6 時間 hybridizationした。この膜を 2×SSC, 0.1% SDS で洗浄した後、imaging plate に露光し、Bio-Imaging Analyzer BAS 1000 system (Fuji Film) にて解析した。

第 10 項 Reverse transcription-PCR (RT-PCR)

培養細胞および組織中の各種遺伝子発現を比較するために RT-PCR を行った。培養細胞および組織からの total RNA の抽出には、TRizol® Reagent (Invitrogen) を使用した。本研究において発現を確認した遺伝子について、以下にその方法の概要を示す。

1. Semi-quantitative RT-PCR

Semi-quantitative RT-PCR には、RNA PCR kit (AMV) ver.2.1 または 3.0 (TaKaRa) を用い、そのプロトコールに従った。各 PCR 産物は、1.5% agarose gel で電気泳動後、エチジウムブロマイドで染色することで検出した。

(1) AQP5, T1α, SP-A, SP-C, Sp3, GAPDH

培養細胞または組織から抽出した total RNA 0.5 μg を鉄型として、Oligo dT primer を用いて、RT 反応 (1 cycle at 42℃ for 60 min, 99℃ for 5 min, 5℃ for 5 min) を行った。その後、それぞれの primer を用いて PCR (1 cycle at 94℃ for 2 min, X at 94℃ for 30 sec, 60℃ for 30 sec, 72℃ for 1 min, 25 cycle for AQP5, 20 cycle for T1α, SP-A, -C and GAPDH) を行った。

(2) Sp1, 18S rRNA

培養細胞または組織から抽出した total RNA 0.5 μg を鉄型として、random 9 mers を用いて、RT 反応 (30℃ for 10 min, 42℃ for 60 min, 99℃ for 5 min, 5℃ for 5 min) を行った。その後、それぞれの primer を用いて PCR (94℃ for 2 min, 1 cycle, 94℃ for 30 sec, 55℃ for 30 sec, 72℃ for 1 min, 30 cycle) を行った。

2. Real-time quantitative RT-PCR

RNA PCR kit (AMV) ver.3.0 (TaKaRa) を用い RT 反応を行い、その産物の 1/10 量を鉄型として、real-time PCR 反応に用いた。Real-time PCR 反応は、SYBR® Premix Ex Taq™
(TaKaRa) を用い、Chromo4™ real-time PCR analysis system (Bio-Rad) にて行った。以下に反応条件を示す。1 cycle at 95℃ for 3 min, 40 cycles at 95℃ for 15 sec, 60℃ for 1 min。また、反応の定量化は、目的 PCR 産物が検出される最初の PCR cycle (threshold cycle (Ct)) を選択し、comparative Ct method (以下の式) にて定量解析した。

\[
\text{Fold Change} = 2^{\frac{\left(\left(C_{T,X}-C_{T,R}\right)_{\text{TEST}} - \left(C_{T,X}-C_{T,R}\right)_{\text{CONTROL}}\right)}{\left(C_{T,X}-C_{T,R}\right)_{\text{TEST}} - \left(C_{T,X}-C_{T,R}\right)_{\text{CONTROL}}}}
\]

\(C_{T,X}\): オのイントセントゲーン
\(C_{T,R}\): オのリファレンスゲーン (GAPDH)

第11項 Western blotting

培養細胞または組織から抽出した細胞溶解液または核蛋白抽出液をサンプルとして用いた。電気泳動前に各サンプルを 99℃で 3 分間反応した (AQP5 検出の時は省略)。各サンプルを 12% (AQP5, T1αおよびβ-actin) または 8%の SDS-PAGE で電気泳動した後、PVDF 膜に転写 (250 mA, 2.5 h, 4℃) した。転写した PVDF 膜は、プロッキング液中、室温で 1 時間振盪しマスキングした。その後、1次抗体反応 (4℃, overnight) を行い、0.05% Tween 20/PBS で洗浄した後、2次抗体反応（室温, 1 h）を行った。2次抗体反応後、PVDF 膜を 0.05% Tween 20/PBS で洗浄した後、ECL™ advance Western blotting analysis system (GE Healthcare Life Sciences) により抗体反応を検出した。ECL 反応の検出には、Bio-imaging analyzer LAS-1000 (Fuji Film) を用いた。なお、各抗体のプロッキング条件および希釈倍率を以下に示す。

Table 1. The conditions of antibody reaction for western blotting.

<table>
<thead>
<tr>
<th>Name</th>
<th>Blocking sol.</th>
<th>Dilution of primary Ab</th>
<th>Dilution of secondary Ab</th>
<th>Ab dilution sol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQP5</td>
<td>5% skim milk*</td>
<td>1:1000</td>
<td>1:20000 (rabbit)</td>
<td>5% skim milk*</td>
</tr>
<tr>
<td>Sp1</td>
<td>1% BSA*</td>
<td>1:1000</td>
<td>1:20000 (rabbit)</td>
<td>0.1% BSA*</td>
</tr>
<tr>
<td>Sp3</td>
<td>Blocking One</td>
<td>1:1000</td>
<td>1:20000 (rabbit)</td>
<td>5% BSA*</td>
</tr>
<tr>
<td>T1 α</td>
<td>5% skim milk*</td>
<td>1:500</td>
<td>1:10000 (mouse)</td>
<td>0.5% skim milk*</td>
</tr>
<tr>
<td>ABCA3</td>
<td>Blocking One</td>
<td>1:1000</td>
<td>1:10000 (mouse)</td>
<td>5% BSA*</td>
</tr>
<tr>
<td>β-actin</td>
<td>Blocking One</td>
<td>1:1000</td>
<td>1:10000 (mouse)</td>
<td>5% BSA*</td>
</tr>
</tbody>
</table>

* diluted with 0.05% Tween 20/PBS (-)
第 12 項 免疫蛍光染色法

Fibronectin コートした glass-bottom dish 上に培養した肺胞 II 型上皮細胞から培地を除
き、冷 PBS で 2 回細胞を洗浄後、4% paraformaldehyde/PBS を加え、室温で 15 分間靜
置し、細胞を固定した。固定後、冷 PBS で 3 回洗浄し、0.1% Triton X-100/PBS を加え、
室温で 10 分間静置することにより、細胞を permeabilize した。冷 PBS で 3 回細胞を洗浄
後、1% goat normal serum/PBS を加え室温で 30 分間静置することにより、細胞をマスキングした。その後、1 次抗体反応 (1:200; AQP5 and Sp3, 室温, 1 h) を行い、冷 PBS で 3
回洗浄し、ついて 2 次抗体反応 (1:500; anti-rabbit, 室温, 1 h) を行った。2 次抗体反応後、
冷 PBS で 3 回洗浄し、1 μg/ml propidium iodine (PI) および 10 μg/ml RNase A を含ん
だ PBS を加え、室温で 10-30 分間静置することで、細胞核を対比染色した。その後、冷 PBS
で 3 回洗浄し、VECTASHIELD® mounted medium (VECTOR LABORATORIES) を滴下、
細胞を封入後、共焦点レーザー顕微鏡 (OLYMPUSIX70) にて細胞を観察した。

第 13 項 免疫組織蛍光染色法

1. 関純切片の作製
(1) 固定

周産期肺: 胎生期 16.5 日目の肺は、摘出し胸部ごと、また胎生期 18.5、20.5 日目およ
び出生後 1 日目の肺は、傷つけないように慎重に摘出した後、3.7% paraformaldehyde/PBS
中に 4℃一晩浸すことで、組織を固定した。

成体肺: 肺を丁寧に摘出し、PBS で肺内腔の空気を除去した後、21 cm 压下にて室温で 6-12
時間、3.7% paraformaldehyde/PBS で肺を膨らますことで、組織を固定した。

(2) 包埋および関純切片の作製

凍結による組織破壊から保護するために、固定した肺を 10%、20% および 30% sucr
ose/PBS にそれぞれ 4℃一晩または室温 4 時間、順次浸すことで、組織から水分を除去
した。その後、O.C.T compound (Sakura Finetechanical Corp.) に包埋し、液体窒素で凍
結した。凍結組織をクリオスタット (CM3050 S, LEICA) にて 6 μm に薄切し、MAS コート
スライドグラス (MATSUNAMI) にて接着させた。凍結組織または凍結切片は、使用するまで
-80℃にて保存した。
2. 免疫組織蛍光染色法

スライドガラス上の凍結組織を室温で 30 分間乾燥させ、-20℃にて冷却した acetone に 5 分間浸すことで、組織を固定した。その後、室温で 30 分間乾燥させ、PBS で洗浄（3 min, 3 回）し、5% goat normal serum/PBS に室温で 1 時間浸し、組織をブロッキングした。ブロッキング後、1 次抗体反応（室温、1 h）を行い、PBS で洗浄（3 min, 3 回）し、ついで 2 次抗体反応反応（室温, 1 h）を行った。2 次抗体反応後、PBS で洗浄（3 min, 3 回）し、VECTASHIELD® mounted medium (VECTOR LABORATORIES) を滴下、カバーガラスで細胞を封入後、共焦点レーザー顕微鏡（OLYMPUSIX70）にて組織を観察した。なお、各抗体の希釈倍率および希釈液を以下に示す。

Table. 2. The conditions of antibody reaction for immunohistochemistry.

<table>
<thead>
<tr>
<th>Name</th>
<th>Dilution of primary Ab</th>
<th>Dilution of secondary Ab</th>
<th>Dilution solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQP5</td>
<td>1:200</td>
<td>1:500 (rabbit)</td>
<td>2% BSA/0.3% Triton X-100/PBS (–)</td>
</tr>
<tr>
<td>Sp1</td>
<td>1:200</td>
<td>1:500 (rabbit)</td>
<td>2% BSA/0.3% Triton X-100/PBS (–)</td>
</tr>
<tr>
<td>Sp3</td>
<td>1:200</td>
<td>1:500 (rabbit)</td>
<td>2% BSA/0.3% Triton X-100/PBS (–)</td>
</tr>
<tr>
<td>ABCA3</td>
<td>1:200</td>
<td>1:500 (mouse)</td>
<td>2% BSA/0.3% Triton X-100/PBS (–)</td>
</tr>
<tr>
<td>T1 α</td>
<td>1:100</td>
<td>1:500 (mouse)</td>
<td>2% BSA/0.3% Triton X-100/PBS (–)</td>
</tr>
</tbody>
</table>

第14項 Chromatin immunoprecipitation (ChIP)

培養液に formaldehyde を 1%となるように加え、37℃, 10 分間静置することで、培養細胞を固定した。固定後、glycine（125 mM）を加え、10 分間静置することでクロスリンク反応を停止させ、冷 PBS で 2 回洗浄した。冷 PBS を加え、セルスクレイバーにて細胞を回収し、遠心（3,000×g, 4℃, 5 min）した。得られたベレットに 200 μl の冷 SDS lysis buffer (50 mM Tris–HCl; pH8.0, 10 mM EDTA, 1% SDS, 1%v/v protease inhibitor cocktail) を加え懸濁し、氷上にて 20 分間静置した。細胞溶解液を bioruptor UCD–250 (Cosmo Bio) にて、超音波処理（出力 250W; 5 cycles of 30 sec each, resting on ice for 1 min between cycles）した。超音波処理後、遠心（15,000×g, 4℃, 10 min）し、その上清を 1800 μl の冷 ChIP dilution buffer (50 mM Tris–HCl; pH8.0, 167 mM NaCl, 1.1% Triton X–100, 0.11% deoxycholate, 1%v/v protease inhibitor cocktail) にて 10 倍に希釈した。この溶液 200 μl を input 分画として用いた。また、残りの溶液 1800 μl に 100 μl の salmon sperm DNA/protein G agarose 50% slurry を加え、4℃, 4 時間反応することで、溶液をプレクリーンした。さらに、特異的抗体 4 μg を加え、クロマチン-抗体免疫複合体を形成（4℃, overnight）させた。この免疫複合体を salmon sperm DNA/protein G agarose 50% slurry
で免疫沈降（4℃, 3 h) し，以下の buffer にて 1 回ずつ順次洗浄した。Low salt wash buffer (50 mM Tris–HCl; pH8.0, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% SDS, 0.1% deoxycholate); high salt wash buffer (50 mM Tris–HCl; pH8.0, 500 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% SDS, 0.1% deoxycholate); LiCl wash buffer (10 mM Tris–HCl; pH8.0, 0.25 M LiCl, 1mM EDTA, 0.5% NP-40, 0.5% deoxycholate); Tris-EDTA buffer. 洗浄後，200 µl の ChIP elution buffer (10 mM Tris–HCl; pH8.0, 300 mM NaCl, 5 mM EDTA, 0.5% SDS) を加え攪拌し，免疫複合体を溶出した。この溶液を 65℃で6-12時間 incubation し, DNA-タンパク質間のクロスリンクを解除した。さらに, RNase A (37℃, 30 min), proteinase K (55℃, 1 h) をそれぞれ加え 随時反応した後, phenol/chloroform 抽出および ethanol 沈殿により DNA を精製し, TE に溶解した。精製した DNA を鋳型に, TaKaRa LA Taq® (TaKaRa) を用いて PCR 反応 (for proximal SBE: 1 cycle at 94℃ for 2 min and 45 cycles at 94℃ for 30 sec, 56℃ for 30 sec, 72℃ for 40 sec; for distal SBE: 1 cycle at 94℃ for 2 min and 40 cycles at 94℃ for 30 sec, 54℃ for 30 sec, 72℃ for 30 sec) を行った。PCR 産物は, 2% agarose gel で電気泳動後, エチジウムブロマイドで染色することで検出した。

第 15 項 Sodium bisulfite DNA sequencing

CpG 領域にあるシトシンがメチル化を受けているか否かを調べるために，本研究では，Sodium bisulfite DNA sequencing 法を用いた。本法は，メチル化シトシンが bisulfite 処理による化学変化（シトシン→ウラシル）をほとんど受けないという特性を利用した方法であり，精度の高いメチル化検出法である。以下に本法の概要を示す。

培養細胞からの genomic DNA の単離・精製には，Wizard®SV Genomic DNA purification system (Promega) を用い，そのプロトコールに従った。Genomic DNA 5 µg を 50 µl の dH2O に溶解した後，用事調製した 3 M NaOH を 5.5 µl 添加し，37℃で 15 分間処理を行った。その後，用事調製した 0.4 M hydroquinone を 15 µl 加え，同じく用事調製した 3.8 M sodium bisulfite (pH 5.0) を 540 µl 添加し，混和した。混和後，PCR cycler を用い，5 cycles at 95℃ for 3 min, 55℃ for 57 min の条件で反応を行った。Bisulfite 処理後，Wizard®SV Minipreps DNA purification Resin/Minicolumns (Promega) を用い DNA を精製し，dH2O 100 µl で溶出した。この溶液に 3 M NaOH を 11 µl 添加し，37℃で 15 分間処理した。さらに，キャリアとして glycogen (Ambion) と 5 M ammoniumacetate を加え，ethanol 沈殿により DNA を精製し，50 µl の TE に溶解した。PCR 反応は，High Fidelity AccuPrime™ Taq DNA polymerase (Invitrogen) を用い，1st PCR の反応液のうち 5 µl を鋳型に nested PCR
を行った．以下に PCR の反応条件を示す．
For rat AQP5 promoter: 1st PCR and 2nd PCR (1 cycle at 94℃ for 15 sec, 40 cycles at 94℃ for 15 sec, 52℃ for 15 sec, 68℃ for 70 sec, and 1 cycle at 5 min)
For mouse AQP5 promoter: 1st PCR (1 cycle at 94℃ for 15 sec, 40 cycles at 94℃ for 15 sec, 53℃ for 15 sec, 68℃ for 70 sec, and 1 cycle at 5 min), 2nd PCR (1 cycle at 94℃ for 15 sec, 40 cycles at 94℃ for 15 sec, 52℃ for 15 sec, 68℃ for 70 sec, and 1 cycle at 5 min)
2nd PCR 産物は，常法に従い pCR®2.1 vector (Invitrogen) を用いてクローニングした．また，それぞれ 10-12 クローンをシークエンス解析し，メチル化の有無を判定した．メチル化の有無の判断は，メチル化が全く起こっていないと仮定した配列，すなわちすべてのシトシンをチミンに変換した配列を作成し，その配列とシークエンス解析した配列を比較し，配列が変化していないシトシンにメチル化が起こっていると判断した．得られたデータをもとに，それぞれの CpG サイトにおけるメチル化 CpG 頻度を算出した．

第16項 レポーター遺伝子の in vitro メチル化

第17項 細胞増殖能の測定 (Flow cytometry (FCM) analysis)

細胞増殖は，細胞に bromodeoxyuridine (BrdU) を取り込まれ，FACS で測定した．以下にその概要を示す．一定時間培養した II 型細胞の培地に 10 µM となるように BrdU (Sigma) を加え，2 時間培養した．培養した II 型細胞から培地を除き，PBS にて 2 回洗浄した．洗浄後，0.25% Trypsin/1 mM EDTA を加え，5 分間静置することで，細胞を剥がした．剥がした細胞を 0.5% BSA/PBS で洗浄後，1 ml の冷 70% ethanol に懸濁し，-20℃に一晩静置することで細胞を固定した．細胞を 0.5% BSA/PBS で洗浄後，2N HCl を 200 µl 加え，室温で 20 分間反応させることで DNA を変性させ，その後 0.1 M sodium borate (pH 8.5) を 500 µl 加え室温で 2 分間反応させることで中和した．細胞を 0.5% BSA/PBS で洗浄後，PE-
conjugated anti-BrdU antibody (1:50 in 0.5% BSA/0.5% Tween 20/PBS) を加え室温で
1 時間抗体反応した。細胞を 0.5% BSA/PBS で洗浄後、1 ml の PBS に懸濁し、150 μm nylon
mesh を通すことで細胞塊を除去した。細胞の蛍光強度の測定には、FACSCalibur® (Becton
Dickinson) を使用し、解析は、Cell Quest® にて行った。

第 18 項 細胞膜水透過性の測定 (Stopped-Flow analysis)

細胞膜を介した水透過性は、stopped-flow 法を用い、Ohnata らの方法に従って測定した
114). 以下にその概要を示す。培養した MLE-12 細胞から培地を除き、PBS にて 2 回細胞
を洗浄した。洗浄後、50 mM EDTA/PBS を加え、5 分間静置することで、細胞を剥がした。
剥がした細胞を PBS で洗浄後、2.5×10^6 cells/ml の細胞密度になるように懸濁した。測定
には、SF-61SX2 (Hi-Tech) を用い、dead time を 0.029 sec、温度を 20℃ に設定した。
浸透圧勾配を作り出すために、細胞懸濁液を等量の水と混和し、細胞を膨張させた。その時
の細胞体積の変化は、530 nm 波長での 90°方向散乱光強度を測定することにより、モニタ
ーした。単位時間当たりの 90°方向散乱光強度の変化速度を、細胞膜を介した水透過性として
算出した。

第 19 項 atRA による AQP5 発現促進作用に関する in vivo での評価

In vivo における AQP5 の発現に対する atRA の影響を調べるために、以下のプロトコー
ルで実験を行った。

実験動物として ICR 系雄性マウス（7 週齢、体重 28～35 g、日本チャールズ・リバー）を
用いた。まず、マウスをラッキングにコントロール群および atRA 投与群に分け、5 日間每日
腹腔内に注射することにより、薬物投与した。コントロールとして、sesame oil および 5%
DMSO を用い、atRA として、1.25 mg/ml atRA を含んだ sesame oil および 5% DMSO を
用いた。飼育期間中の餌および水分は、自由摂取とした。投与後、マウスを pentobarbital
sodium (25 mg/kg, i.p.) にて麻酔した。その後、70% ethanol で全身を消毒し、開腹、
下大動脈より脱血致死させた。肺を損傷しないように注意深く露出した後、PBS で洗浄し、
実験に用いた。

90
第20項 Phosphatidylcholine 分泌の測定

12 well plate 上にて24時間培養したラット肺胞Ⅱ型上皮細胞から培地を除き、fresh DMEM にて細胞を洗浄した後、phosphatidylcholine の細胞内プールラベルするため [3H]-choline (74 kBq/ml) を加え、さらに24時間培養した。培養後、培地を除き、fresh DMEM を加え、2時間インキュベートした。培地を回収、遠心 (200×g, 10 min) し、細胞を 0.05% Triton X-100 にて回収した。さらに回収した培地および細胞から chloroform と methanol にて総脂質を抽出し、総脂質放射活性を液体シンチレーションカウンター (Beckman LS 6500) にて測定した。なお、分泌値は細胞および培地中の総活性に対する2時間後の培地中の放射活性の比によって表した。

第21項 統計処理

実験データは平均値±標準偏差または標準誤差で示した。本研究では、2群間の有意差検定に student’s t検定を、3群間以上の有意差検定に student-Newman-Keuls 検定を用い、5%以下の危険率をもって有意差とした。
謝 辞

稿を終えるにあたり、終始多大なる御指導、御鞭撻および御校閲を賜りました 崇城大学薬学部 宮田 健 教授に深甚なる感謝の意を表します。

私の 6 年間の研究室生活に際し、終始懇篤なる御指導、御鞭撻を賜り、また本研究および本稿作製にあたり多大なる御教示、御援助および御校閲を賜りました 熊本大学大学院医学薬学研究部 磯濱 洋一郎 助教授に心から厚く感謝の意を表します。

本論文の審査にあたり、有益なる御助言と御校閲を賜りました 熊本大学大学院医学薬学研究部 中山 仁 教授ならびに甲斐 広文 教授に厚く御礼申し上げます。

本研究に際し、有益なる御指導と御援助を賜りました 熊本大学大学院医学薬学研究部久恒 昭哲 助手に深賜致します。

本研究に際し、有益なる御助言、御教示を賜りました 熊本大学大学院医学薬学研究部首藤 剛 講師ならびに Mary Ann Soten Sulco 助手に厚く感謝致します。

本研究に際し、pSp1-3-Luc plasmid を譲渡して頂いた Texas A&M University, Stephen H. Safe 博士に、また Sp1/pN3 および Sp3/pN3 plasmid を譲渡して頂いた Philipps University, Guntram Suske 博士に深く感謝致します。

私の 9 年間の大学生活に際し、同級生、友人として苦楽を共にした、長井 一史 修士に心から感謝致します。

本研究および研究室生活に際し、御協力、御助言を頂きました薬物活性学研究室の諸氏に感謝の意を表します。特に、共同研究者としてご協力いただいた、見上 裕士 修士、瀬戸 真由美 学士、堀江 一郎 学士に心から感謝致します。

最後に、ここまで私を支えてくれた友人に、そして、ここまで育て見守ってくれた両親に心から感謝します。

2007 年 3 月

92

12. Shimozaki, K., Namihira, M., Nakashima, K. and Taga, T. Stage- and site-

22. Ripoche, P., Goossens, D., Devuyst, O., Gane, P., Colin, Y., Verkman, A. S. and Cartron, J. P. Role of RhAG and AQP1 in NH3 and CO2 gas transport in

43. Knight, J. B., Eyster, C. A., Griesel, B. A. and Olson, A. L. Regulation of the

55. Margana, R., Berhane, K., Alam, M. N. and Boggaram, V. Identification of functional TTF–1 and Sp1/Sp3 sites in the upstream promoter region of

66. Wong, W. K., Chen, K. and Shih, J. C. Decreased methylation and

77. Ramirez, M. I., Cao, Y. X. and Williams, M. C. 1.3 kilobases of the lung type I cell T1alpha gene promoter mimics endogenous gene expression patterns during development but lacks sequences to enhance expression in perinatal

88. Biesalski, H. K. and Nohr, D. Importance of vitamin-A for lung function and
89. Hind, M., Corcoran, J. and Maden, M. Temporal/spatial expression of retinoid
binding proteins and RAR isoforms in the postnatal lung. *Am J Physiol Lung
90. Hind, M., Corcoran, J. and Maden, M. Alveolar proliferation, retinoid
synthesizing enzymes, and endogenous retinoids in the postnatal mouse lung.
(2002).
91. Ozer, E. A., Kumral, A., Ozer, E., Duman, N., Yilmaz, O., Ozkal, S. and Ozkan,
H. Effect of retinoic acid on oxygen–induced lung injury in the newborn rat.
92. Couroucli, X. I., Liang, Y. W., Jiang, W., Barrios, R. and Moorthy, B.
Attenuation of oxygen–induced abnormal lung maturation in rats by retinoic
acid: possible role of cytochrome P4501A enzymes. *J Pharmacol Exp Ther
93. Hind, M. and Maden, M. Retinoic acid induces alveolar regeneration in the
94. Nabeyrat, E., Corroyer, S., Epaud, R., Besnard, V., Cazals, V. and Clement, A.
Retinoic acid–induced proliferation of lung alveolar epithelial cells is linked to
(2000).
95. Koo, J. S., Jetten, A. M., Belloni, P., Yoon, J. H., Kim, Y. D. and Nettesheim, P.
Role of retinoid receptors in the regulation of mucin gene expression by
retinoic acid in human tracheobronchial epithelial cells. *Biochem J* **338** (Pt
96. Naltner, A., Ghaffari, M., Whitsett, J. A. and Yan, C. Retinoic acid stimulation
of the human surfactant protein B promoter is thyroid transcription factor 1
97. Ross, A. C. and Stephensen, C. B. Vitamin A and retinoids in antiviral

111. Li, T., Chen, Y. H., Liu, T. J., Jia, J., Hampson, S., Shan, Y. X., Kibler, D. and

